时间复杂度 P/NP/NPC

你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题并不是那种“只有搜才行”的问题,NPC问题才是。好,行了,基本上这个误解已经被澄清了。下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。

还是先用几句话简单说明一下时间复杂度。时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。

容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者:一种是O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是O(a^n)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

自然地,人们会想到一个问题:会不会所有的问题都可以找到复杂度为多项式级的算法呢?很遗憾,答案是否定的。有些问题甚至根本不可能找到一个正确的算法来,这称之为“不可解问题”(Undecidable Decision Problem)。The Halting Problem就是一个著名的不可解问题,在我的Blog上有过专门的介绍和证明。再比如,输出从1到n这n个数的全排列。不管你用什么方法,你的复杂度都是阶乘级,因为你总得用阶乘级的时间打印出结果来。有人说,这样的“问题”不是一个“正规”的问题,正规的问题是让程序解决一个问题,输出一个“YES”或“NO”(这被称为判定性问题),或者一个什么什么的最优值(这被称为最优化问题)。那么,根据这个定义,我也能举出一个不大可能会有多项式级算法的问题来:Hamilton回路。问题是这样的:给你一个图,问你能否找到一条经过每个顶点一次且恰好一次(不遗漏也不重复)最后又走回来的路(满足这个条件的路径叫做Hamilton回路)。这个问题现在还没有找到多项式级的算法。事实上,这个问题就是我们后面要说的NPC问题。

下面引入P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。P是英文单词多项式的第一个字母。哪些问题是P类问题呢?通常NOI和NOIP不会出不属于P类问题的题目。我们常见到的一些信息奥赛的题目都是P问题。道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。

接下来引入NP问题的概念。这个就有点难理解了,或者说容易理解错误。在这里强调(回到我竭力想澄清的误区上),NP问题不是非P类问题。NP问题是指可以在多项式的时间里验证一个解的问题。NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。比方说,我RP很好,在程序中需要枚举时,我可以一猜一个准。现在某人拿到了一个求最短路径的问题,问从起点到终点是否有一条小于100个单位长度的路线。它根据数据画好了图,但怎么也算不出来,于是来问我:你看怎么选条路走得最少?我说,我RP很好,肯定能随便给你指条很短的路出来。然后我就胡乱画了几条线,说就这条吧。那人按我指的这条把权值加起来一看,嘿,神了,路径长度98,比100小。于是答案出来了,存在比100小的路径。别人会问他这题怎么做出来的,他就可以说,因为我找到了一个比100 小的解。在这个题中,找一个解很困难,但验证一个解很容易。验证一个解只需要O(n)的时间复杂度,也就是说我可以花O(n)的时间把我猜的路径的长度加出来。那么,只要我RP好,猜得准,我一定能在多项式的时间里解决这个问题。我猜到的方案总是最优的,不满足题意的方案也不会来骗我去选它。这就是NP问题。当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。下面我要举的例子是一个经典的例子,它指出了一个目前还没有办法在多项式的时间里验证一个解的问题。很显然,前面所说的Hamilton回路是NP问题,因为验证一条路是否恰好经过了每一个顶点非常容易。但我要把问题换成这样:试问一个图中是否不存在Hamilton回路。这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它“没有Hamilton回路”。

之所以要定义NP问题,是因为通常只有NP问题才可能找到多项式的算法。我们不会指望一个连多项式地验证一个解都不行的问题存在一个解决它的多项式级的算法。相信读者很快明白,信息学中的号称最困难的问题——“NP问题”,实际上是在探讨NP问题与P类问题的关系。

很显然,所有的P类问题都是NP问题。也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。关键是,人们想知道,是否所有的NP问题都是P类问题。我们可以再用集合的观点来说明。如果把所有P类问题归为一个集合P中,把所有 NP问题划进另一个集合NP中,那么,显然有P属于NP。现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有P=NP?通常所谓的“NP问题”,其实就一句话:证明或推翻P=NP。

NP问题一直都是信息学的巅峰。巅峰,意即很引人注目但难以解决。在信息学研究中,这是一个耗费了很多时间和精力也没有解决的终极问题,好比物理学中的大统一和数学中的歌德巴赫猜想等。目前为止这个问题还“啃不动”。但是,一个总的趋势、一个大方向是有的。人们普遍认为,P=NP不成立,也就是说,多数人相信,存在至少一个不可能有多项式级复杂度的算法的NP问题。人们如此坚信P≠NP是有原因的,就是在研究NP问题的过程中找出了一类非常特殊的NP问题叫做NP-完全问题,也即所谓的 NPC问题。C是英文单词“完全”的第一个字母。正是NPC问题的存在,使人们相信P≠NP。下文将花大量篇幅介绍NPC问题,你从中可以体会到NPC问题使P=NP变得多么不可思议。

为了说明NPC问题,我们先引入一个概念——约化(Reducibility,有的资料上叫“归约”)。

简单地说,一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。《算法导论》上举了这么一个例子。比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。按照这个规则把前一个问题转换成后一个问题,两个问题就等价了。同样地,我们可以说,Hamilton回路可以约化为TSP问题(Travelling Salesman Problem,旅行商问题):在Hamilton回路问题中,两点相连即这两点距离为0,两点不直接相连则令其距离为1,于是问题转化为在TSP问题中,是否存在一条长为0的路径。Hamilton回路存在当且仅当TSP问题中存在长为0的回路。

“问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。也就是说,问题A不比问题B难。这很容易理解。既然问题A能用问题B来解决,倘若B的时间复杂度比A的时间复杂度还低了,那A的算法就可以改进为B的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。

很显然,约化具有一项重要的性质:约化具有传递性。如果问题A可约化为问题B,问题B可约化为问题C,则问题A一定可约化为问题C。这个道理非常简单,就不必阐述了。

现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B。

当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。约化的过程只有用多项式的时间完成才有意义。

好了,从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。再回想前面讲的P和NP问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小NP问题的一个稍复杂的大NP问题,那么最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的 NP问题的这样一个超级NP问题?答案居然是肯定的。也就是说,存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC 问题,也就是NP-完全问题。NPC问题的出现使整个NP问题的研究得到了飞跃式的发展。我们有理由相信,NPC问题是最复杂的问题。再次回到全文开头,我们可以看到,人们想表达一个问题不存在多项式的高效算法时应该说它“属于NPC问题”。此时,我的目的终于达到了,我已经把NP问题和NPC问题区别开了。到此为止,本文已经写了近5000字了,我佩服你还能看到这里来,同时也佩服一下自己能写到这里来。

NPC问题的定义非常简单。同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是 NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它(由约化的传递性,则NPC问题定义的第二条也得以满足;至于第一个NPC问题是怎么来的,下文将介绍),这样就可以说它是NPC问题了。

既然所有的NP问题都能约化成NPC问题,那么只要任意一个NPC问题找到了一个多项式的算法,那么所有的NP问题都能用这个算法解决了,NP也就等于P 了。因此,给NPC找一个多项式算法太不可思议了。因此,前文才说,“正是NPC问题的存在,使人们相信P≠NP”。我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

顺便讲一下NP-Hard问题。NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广)。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。

不要以为NPC问题是一纸空谈。NPC问题是存在的。

逻辑电路问题属于NPC问题。这是有严格证明的。它显然属于NP问题,并且可以直接证明所有的NP问题都可以约化到它(不要以为NP问题有无穷多个将给证明造成不可逾越的困难)。证明过程相当复杂,其大概意思是说任意一个NP问题的输入和输出都可以转换成逻辑电路的输入和输出(想想计算机内部也不过是一些 0和1的运算),因此对于一个NP问题来说,问题转化为了求出满足结果为True的一个输入(即一个可行解)。

有了第一个NPC问题后,一大堆NPC问题就出现了,因为再证明一个新的NPC问题只需要将一个已知的NPC问题约化到它就行了。后来,Hamilton 回路成了NPC问题,TSP问题也成了NPC问题。现在被证明是NPC问题的有很多,任何一个找到了多项式算法的话所有的NP问题都可以完美解决了。因此说,正是因为NPC问题的存在,P=NP变得难以置信。P=NP问题还有许多有趣的东西,有待大家自己进一步的挖掘。攀登这个信息学的巅峰是我们这一代的终极目标。现在我们需要做的,至少是不要把概念弄混淆了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kmp1-HDU1711 HDU1686 HDU2087 HDU3746

HDU 1711 kmp模板题 http://acm.hdu.edu.cn/showproblem.php?pid1711 #include<stdio.h> #include<string.h> #define N 1000005 int s[N]; int p[N]; int next[N]; int m,n; void getnext(){int j0,k-1;next[0]-1;while(j<m){if(k-1||p[j]p[k]){j;k;next[j]…

kmp2-HDU1358 HUST1010 POJ2406 POJ2752

HDU1358 http://acm.hdu.edu.cn/showproblem.php?pid1358 先构造出 next[] 数组&#xff0c;下标为 i&#xff0c;定义一个变量 j i - next[i] 就是next数组下标和下标对应值的差&#xff0c;如果这个差能整除下标 i&#xff0c;即 i%j0 ,则说明下标i之前的字符串&#xff0…

18暑期培训总结

暑假一共直播讲了七次课&#xff0c;每次一小时到一个半小时&#xff0c;前六次讲解python主要实用语法&#xff0c;最后一次讲了学习方法和简单基础的思想和算法。由于时间有限&#xff0c;不能做到很好&#xff0c;请见谅。 学院做题网站&#xff1a;橙白oj http://oj.acm-i…

第七次课 课上代码

时间空间复杂度&#xff08;例子&#xff1a;1-n求和&#xff09; 复杂度&#xff1a;https://blog.csdn.net/hebtu666/article/details/82463970 https://blog.csdn.net/hebtu666/article/details/82465495 二分 一个数组查找某个值1 2 3 5 6 7 8 9 10 15 20。。 查找11 …

数据结构课上笔记1

第一节课复习了c语言的一些知识&#xff0c;并简单介绍了数据结构这门课程。 1、引用和函数调用&#xff1a; 1.1引用&#xff1a;对一个数据建立一个“引用”&#xff0c;他的作用是为一个变量起一个别名。这是C对C语言的一个重要补充。 用法很简单&#xff1a; int a 5; …

并查集实现

并查集是什么东西&#xff1f; 它是用来管理元素分组情况的一种数据结构。 他可以高效进行两个操作&#xff1a; 查询a&#xff0c;b是否在同一组合并a和b所在的组 萌新可能不知所云&#xff0c;这个结构到底有什么用&#xff1f; 经分析&#xff0c;并查集效率之高超乎想象…

字符串上的简单动态规划

因为数据结构快学串了&#xff0c;以前又做过一些字符串dp的题&#xff0c;今天突然就想把它们写在一起吧。 直接开始 问题1&#xff1a;给两个字符串&#xff0c;求最长公共子串 问题2&#xff1a;给两个字符串&#xff0c;求最长公共子序列 问题3&#xff1a;给一个字符串…

线段树简单实现

首先&#xff0c;线段树是一棵满二叉树。&#xff08;每个节点要么有两个孩子&#xff0c;要么是深度相同的叶子节点&#xff09; 每个节点维护某个区间&#xff0c;根维护所有的。 如图&#xff0c;区间是二分父的区间。 当有n个元素&#xff0c;初始化需要o(n)时间&#xf…

树状数组实现

树状数组能够完成如下操作&#xff1a; 给一个序列a0-an 计算前i项和 对某个值加x 时间o(logn) 注意&#xff1a;有人觉得前缀和就行了&#xff0c;但是你还要维护啊&#xff0c;改变某个值&#xff0c;一个一个改变前缀和就是o(n)了。 线段树树状数组的题就是这样&#x…

数据结构课上笔记2

今天继续说明了一些基本概念&#xff0c;讲解了时间空间复杂度。 &#xff08;对于概念的掌握也很重要&#xff09; 元素之间的关系在计算机中有两种表示方法&#xff1a;顺序映像和非顺序映像&#xff0c;由此得到两种不同的储存结构&#xff1a; 顺序存储结构和链式存储结构…

双端单调队列

上次我们介绍了单调栈结构https://blog.csdn.net/hebtu666/article/details/82717317 这次介绍一种新的数据结构&#xff1a;双端队列&#xff1a;双端队列是指允许两端都可以进行入队和出队操作的队列&#xff0c;其元素的逻辑结构仍是线性结构。将队列的两端分别称为前端和后…

KMP子字符串匹配算法学习笔记

文章目录学习资源什么是KMP什么是前缀表为什么一定要用前缀表如何计算前缀表前缀表有什么问题使用next数组来匹配放码过来构造next数组一、初始化二、处理前后缀不相同的情况三、处理前后缀相同的情况使用next数组来做匹配代码总览测试代码时间复杂度分析学习资源 字符串&…

数组实现队列

数组实现队列结构&#xff1a; 相对栈结构要难搞一些&#xff0c;队列的先进先出的&#xff0c;需要一个数组和三个变量&#xff0c;size记录已经进来了多少个元素&#xff0c;不需要其它萌新看不懂的知识。 触底反弹&#xff0c;头尾追逐的感觉。 循环使用数组。 具体解释…

栈/队列 互相模拟实现

用两个栈来实现一个队列&#xff0c;完成队列的Push和Pop操作。 队列中的元素为int类型。 思路&#xff1a;大概这么想&#xff1a;用一个辅助栈把进第一个栈的元素倒一下就好了。 比如进栈1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5 第一个栈&#xff1a; 5 …

数据结构课上笔记3

这节课介绍了线性表结构和顺序表示的一部分内容。 操作太多&#xff0c;而且书上有&#xff0c;就不一一介绍分析了。 线性表定义&#xff1a;n个数据元素的有限序列。 特点&#xff1a; 存在唯一一个称作“第一个”的元素。存在唯一一个称作“最后一个”的元素除最后一个元…

内存分区

之前一直比较懵&#xff0c;想想还是单独写一个短篇来记录吧 一般内存主要分为&#xff1a;代码区、常量区、静态区&#xff08;全局区&#xff09;、堆区、栈区这几个区域。 代码区&#xff1a;存放程序的代码&#xff0c;即CPU执行的机器指令&#xff0c;并且是只读的。 常…

栈的排序

一个栈中元素的类型为整型&#xff0c;现在想将该栈从顶到底按从大到小的顺序排序&#xff0c;只许申请一个栈。除此之外&#xff0c;可以申请新的变量&#xff0c;但是不能申请额外的数据结构&#xff0c;如何完成排序&#xff1f; 思路&#xff1a; 将要排序的栈记为stack,申…

双链表实现

以前写的不带头的单链表实现&#xff0c;当时也啥也没学&#xff0c;好多东西不知道&#xff0c;加上一心想压缩代码&#xff0c;减少情况&#xff0c;所以写得不太好。 请教了老师&#xff0c;首先是命名问题和代码紧凑性等的改进。还有可读性方面的改进&#xff0c;多写了一…

数据结构作业1 讲解和拓展

原题来自雪梨教育 http://www.edu2act.net/task/list/checked/ 题后给出讲解和扩展 任务1_1 比较下列算法的时间复杂度 任务描述&#xff1a; 下面给出4个算法&#xff0c;请分析下列各算法的时间复杂度&#xff0c;请写清楚题号&#xff0c;并将每个小题的分析过程写出来&…

KMP+DP1

Description 求一个字符串的所有前缀在串中出现的次数之和 Input 多组用例&#xff0c;每组用例占一行为一个长度不超过100000的字符串&#xff0c;以文件尾结束输入 Output 对于每组用例&#xff0c;输出该字符串的所有前缀在串中出现的次数之和&#xff0c;结果模256 Samp…