BFPRT

在一大堆数中求其前k大或前k小的问题,简称TOP-K问题。而目前解决TOP-K问题最有效的算法即是BFPRT算法,其又称为中位数的中位数算法,该算法由Blum、Floyd、Pratt、Rivest、Tarjan提出,最坏时间复杂度为O(n)O(n)。

读者要会快速排序相关知识,如果不会请看这里:

https://blog.csdn.net/hebtu666/article/details/81434236排序,大家在里面找快速排序阅读即可。

 

我们以前写过快排的改进求前k大或前k小,但是快排不可避免地存在退化问题,即使我们用了随机数等优化,最差情况不可避免的退化到了O(N^2),而BFPRT就解决了这个问题,主要的思想精华就是怎么选取划分值。

我们知道,经典快排是选第一个数进行划分。而改进快排是随机选取一个数进行划分,从概率上避免了基本有序情况的退化。而BFPRT算法选划分值的规则比较特殊,保证了递归最小的缩减规模也会比较大,而不是每次缩小一个数。

这个划分值如何划分就是重点。

如何让选取的点无论如何都不会太差。

1、将n个元素划分为n/5个组,每组5个元素
2、对每组排序,找到n/5个组中每一组的中位数; 
3、对于找到的所有中位数,调用BFPRT算法求出它们的中位数,作为划分值。

下面说明为什么这样找划分值。

我们先把数每五个分为一组。

同一列为一组。

排序之后,第三行就是各组的中位数。

我们把第三行的数构成一个数列,递归找,找到中位数。

这个黑色框为什么找的很好。

因为他一定比A3、B3大,而A3、B3、C3又在自己的组内比两个数要大。

我们看最差情况:求算其它的数都比c3大,我们也能在25个数中缩小九个数的规模。大约3/10.

我们就做到了最差情况固定递减规模,而不是可能缩小的很少。

下面代码实现:

public class BFPRT {
//前k小public static int[] getMinKNumsByBFPRT(int[] arr, int k) {if (k < 1 || k > arr.length) {return arr;}int minKth = getMinKthByBFPRT(arr, k);int[] res = new int[k];int index = 0;for (int i = 0; i != arr.length; i++) {if (arr[i] < minKth) {res[index++] = arr[i];}}for (; index != res.length; index++) {res[index] = minKth;}return res;}
//第k小public static int getMinKthByBFPRT(int[] arr, int K) {int[] copyArr = copyArray(arr);return select(copyArr, 0, copyArr.length - 1, K - 1);}public static int[] copyArray(int[] arr) {int[] res = new int[arr.length];for (int i = 0; i != res.length; i++) {res[i] = arr[i];}return res;}
//给定一个数组和范围,求第i小的数public static int select(int[] arr, int begin, int end, int i) {if (begin == end) {return arr[begin];}int pivot = medianOfMedians(arr, begin, end);//划分值int[] pivotRange = partition(arr, begin, end, pivot);if (i >= pivotRange[0] && i <= pivotRange[1]) {return arr[i];} else if (i < pivotRange[0]) {return select(arr, begin, pivotRange[0] - 1, i);} else {return select(arr, pivotRange[1] + 1, end, i);}}
//在begin end范围内进行操作public static int medianOfMedians(int[] arr, int begin, int end) {int num = end - begin + 1;int offset = num % 5 == 0 ? 0 : 1;//最后一组的情况int[] mArr = new int[num / 5 + offset];//中位数组成的数组for (int i = 0; i < mArr.length; i++) {int beginI = begin + i * 5;int endI = beginI + 4;mArr[i] = getMedian(arr, beginI, Math.min(end, endI));}return select(mArr, 0, mArr.length - 1, mArr.length / 2);//只不过i等于长度一半,用来求中位数}
//经典partition过程public static int[] partition(int[] arr, int begin, int end, int pivotValue) {int small = begin - 1;int cur = begin;int big = end + 1;while (cur != big) {if (arr[cur] < pivotValue) {swap(arr, ++small, cur++);} else if (arr[cur] > pivotValue) {swap(arr, cur, --big);} else {cur++;}}int[] range = new int[2];range[0] = small + 1;range[1] = big - 1;return range;}
//五个数排序,返回中位数public static int getMedian(int[] arr, int begin, int end) {insertionSort(arr, begin, end);int sum = end + begin;int mid = (sum / 2) + (sum % 2);return arr[mid];}
//手写排序public static void insertionSort(int[] arr, int begin, int end) {for (int i = begin + 1; i != end + 1; i++) {for (int j = i; j != begin; j--) {if (arr[j - 1] > arr[j]) {swap(arr, j - 1, j);} else {break;}}}}
//交换值public static void swap(int[] arr, int index1, int index2) {int tmp = arr[index1];arr[index1] = arr[index2];arr[index2] = tmp;}
//打印public static void printArray(int[] arr) {for (int i = 0; i != arr.length; i++) {System.out.print(arr[i] + " ");}System.out.println();}public static void main(String[] args) {int[] arr = { 6, 9, 1, 3, 1, 2, 2, 5, 6, 1, 3, 5, 9, 7, 2, 5, 6, 1, 9 };// sorted : { 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 9, 9, 9 }printArray(getMinKNumsByBFPRT(arr, 10));}
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HistCite 的使用方法

摘要 读文献自然要读精品&#xff0c;在面对一个陌生领域&#xff0c;如何才能以最快速度定位精品文献呢&#xff1f;本文将详细介绍 HistCite 的使用方法&#xff0c;结合 Web of Science 和 Endnote &#xff0c;演示如何在几个小时之内&#xff0c;对某个陌生领域的文献进行…

数据结构课上笔记7

介绍栈和队列基本概念和用法。 设输入序列1、2、3、4&#xff0c;则下述序列中&#xff08; &#xff09;不可能是出栈序列。【中科院中国科技大学2005】 A. 1、2、3、4 B. 4、 3、2、1 C. 1、3、4、2 D.&#xff14;、1、2、3 选…

ROC曲线与AUC值

ROC曲线与AUC值 1.概述AUC&#xff08;Area Under roc Curve&#xff09;是一种用来度量分类模型好坏的一个标准。这样的标准其实有很多&#xff0c;例如&#xff1a;大约10年前在machine learning文献中一统天下的标准&#xff1a;分类精度&#xff1b;在信息检索(IR)领域中常…

设置SSH免密码自动登录(使用别名)

每次登录服务器都要写一大串的用户名&#xff08;username服务器地址&#xff09;和登录密码十分的繁琐&#xff0c;所以本文就告诉大家如何通过修改配置文件&#xff0c;达到只需要输入&#xff1a;ssh jack(你起的别名)就可以一键登录到服务器中。 1.创建公钥&#xff08;相当…

串的定长表示

思想和代码都不难&#xff0c;和线性表也差不多&#xff0c;串本来就是数据受限的线性表。 串连接&#xff1a; #include <stdio.h> #include <string.h> //串的定长顺序存储表示 #define MAXSTRLEN 255 //用户可在255以内定义最大串长 typedef unsigned cha…

轻松理解牛顿迭代法且用其求平方根

牛顿迭代法概述 牛顿迭代法&#xff08;Newton’s method&#xff09;又称为牛顿-拉弗森方法&#xff08;Newton-Raphson method&#xff09;&#xff0c;它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 牛顿迭代公式 设rrr是f(x)0f(x)0f(x)0的根&#…

如何使用cookie信息,完成自动登录

在做爬虫任务的时候&#xff0c;我们常常会遇到很多网页必须登录后&#xff0c;才可以开放某些页面。所以登录是爬取网页的第一步。但是&#xff0c;通过post表单&#xff08;包含用户名和密码&#xff09;的方法&#xff0c;对于那些不需要输入比较复杂的验证码的网页&#xf…

Spring Cloud 学习笔记(1 / 3)

Spring Cloud 学习笔记&#xff08;2 / 3&#xff09; Spring Cloud 学习笔记&#xff08;3 / 3&#xff09; ---01_前言闲聊和课程说明02_零基础微服务架构理论入门03_第二季Boot和Cloud版本选型04_Cloud组件停更说明05_父工程Project空间新建06_父工程pom文件07_复习Depend…

后缀树/后缀数组

字典树&#xff1a;https://blog.csdn.net/hebtu666/article/details/83141560 后缀树&#xff1a;后缀树&#xff0c;就是把一串字符的所有后缀保存并且压缩的字典树。 相对于字典树来说&#xff0c;后缀树并不是针对大量字符串的&#xff0c;而是针对一个或几个字符串来解决…

kaggle(02)-房价预测案例(基础版)

房价预测案例 Step 1: 检视源数据集 import numpy as np import pandas as pd读入数据 一般来说源数据的index那一栏没什么用&#xff0c;我们可以用来作为我们pandas dataframe的index。这样之后要是检索起来也省事儿。 有人的地方就有鄙视链。跟知乎一样。Kaggle的也是个处…

如何使用github中的pull request功能?

* pull request是社会化编程的象征&#xff0c;通过这个功能&#xff0c;你可以参与到别人开发的项目中&#xff0c;并做出自己的贡献。pull request是自己修改源代码后&#xff0c;请求对方仓库采纳的一种行为*–《github入门与实践》 下面具体说一下github中使用pull reque…

「假装努力」

有多少人在「假装努力」&#xff1f; 又有多少人在「真正成长」&#xff1f; 再努力努力 回想起当年毕业后&#xff0c;在北京和室友合租的日子。 那时&#xff0c;我在工作&#xff0c;室友在培训。 一天&#xff0c;我下班回来&#xff0c;听见他在电话里和家人争吵&…

如何阅读论文?

本文主要讲述了如何才能高效的阅读一篇论文&#xff01;&#xff01;

数据结构课上笔记8

串的概念&#xff1a;串&#xff08;字符串&#xff09;&#xff1a;是由 0 个或多个字符组成的有限序列。 通常记为&#xff1a;s ‘ a1 a2 a3 … ai …an ’ ( n≥0 )。 串的逻辑结构和线性表极为相似。 一些串的类型&#xff1a; 空串&#xff1a;不含任何字符的串&#x…

Numpy 入门

Numpy 入门 Numpy简介 官网链接&#xff1a;http://www.numpy.org/NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算&#xff0c;此外也针对数组运算提供大量的数学函数库 Numpy的基本功能 快速高效的多维数组对象ndarray用于对数组执行元素级计算以…

数据结构课上笔记10

树 树的定义&#xff1a;树(Tree)是 n(n≥0)个结点的有限集。若 n0&#xff0c;称为空树&#xff1b;若 n > 0&#xff0c;则它满足如下两个条件&#xff1a; (1) 有且仅有一个特定的称为根 (Root) 的结点&#xff1b; (2) 其余结点可分为 m (m≥0) 个互不相交的有限…

pandasStudyNoteBook

pandas 入门培训 pandas简介 - 官网链接&#xff1a;http://pandas.pydata.org/ - pandas pannel data data analysis - Pandas是python的一个数据分析包 , Pandas最初被作为金融数据分析工具而开发出来&#xff0c;因此&#xff0c;pandas为时间序列分析提供了很好的支持 …

二叉树最长路径

分析&#xff1a; 暴力求每一段距离也可。 对于以本节点为根的二叉树&#xff0c;最远距离有三种可能&#xff1a; 1&#xff09;最远路径来自左子树 2 &#xff09;最远路径来自右子树&#xff08;图示与左子树同理&#xff09; 3&#xff09;最远路径为左右子树距离根最远…

判断完全二叉树

完全二叉树的定义: 一棵二叉树&#xff0c;除了最后一层之外都是完全填充的&#xff0c;并且最后一层的叶子结点都在左边。 https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E4%BA%8C%E5%8F%89%E6%A0%91/7773232?fraladdin 百度定义 思路&#xff1a;层序遍历二叉树 如果…

判断二叉搜索树

二叉查找树&#xff08;Binary Search Tree&#xff09;&#xff0c;&#xff08;又&#xff1a;二叉搜索树&#xff0c;二叉排序树&#xff09;它或者是一棵空树&#xff0c;或者是具有下列性质的二叉树&#xff1a; 若它的左子树不空&#xff0c;则左子树上所有结点的值均小于…