ROC曲线与AUC值

ROC曲线与AUC值

1.概述
AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准。这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度;在信息检索(IR)领域中常用的recall和precision,等等。其实,度量反应了人们对”好”的分类结果的追求,同一时期的不同的度量反映了人们对什么是”好”这个最根本问题的不同认识,而不同时期流行的度量则反映了人们认识事物的深度的变化。
近年来,随着machine learning的相关技术从实验室走向实际应用,一些实际的问题对度量标准提出了新的需求。特别的,现实中样本在不同类别上的不均衡分布(class distribution imbalance problem)。使得accuracy这样的传统的度量标准不能恰当的反应分类器的performance。举个例子:测试样本中有A类样本90个,B 类样本10个。分类器C1把所有的测试样本都分成了A类,分类器C2把A类的90个样本分对了70个,B类的10个样本分对了5个。则C1的分类精度为 90%,C2的分类精度为75%。但是,显然C2更有用些。另外,在一些分类问题中犯不同的错误代价是不同的(cost sensitive learning)。这样,默认0.5为分类阈值的传统做法也显得不恰当了。
为了解决上述问题,人们从医疗分析领域引入了一种新的分类模型performance评判方法——ROC分析。ROC分析本身就是一个很丰富的内容,有兴趣的读者可以自行Google,这里只做些简单的概念性的介绍。
ROC的全名叫做Receiver Operating Characteristic,其主要分析工具是一个画在二维平面上的曲线——ROC curve。平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR)。对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPR和FPR点对。这样,此分类器就可以映射成ROC平面上的一个点。调整这个分类器分类时候使用的阈值,我们就可以得到一个经过(0, 0),(1, 1)的曲线,这就是此分类器的ROC曲线。一般情况下,这个曲线都应该处于(0, 0)和(1, 1)连线的上方。因为(0, 0)和(1, 1)连线形成的ROC曲线实际上代表的是一个随机分类器。如果很不幸,你得到一个位于此直线下方的分类器的话,一个直观的补救办法就是把所有的预测结果反向,即:分类器输出结果为正类,则最终分类的结果为负类,反之,则为正类。虽然,用ROC curve来表示分类器的performance很直观好用。可是,人们总是希望能有一个数值来标志分类器的好坏。于是Area Under roc Curve(AUC)就出现了。顾名思义,AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance。

2.ROC曲线

2.1ROC的动机

对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签,如神经网络得到诸如0.5,0.8这样的分类结果。这时,我们人为取一个阈值,比如0.4,那么小于0.4的归为0类,大于等于0.4的归为1类,可以得到一个分类结果。同样,这个阈值我们可以取0.1或0.2等等。取不同的阈值,最后得到的分类情况也就不同。如下面这幅图:
蓝色表示原始为负类分类得到的统计图,红色表示原始为正类得到的统计图。那么我们取一条直线,直线左边分为负类,直线右边分为正类,这条直线也就是我们所取的阈值。阈值不同,可以得到不同的结果,但是由分类器决定的统计图始终是不变的。这时候就需要一个独立于阈值,只与分类器有关的评价指标,来衡量特定分类器的好坏。还有在类不平衡的情况下,如正样本有90个,负样本有10个,直接把所有样本分类为正样本,得到识别率为90%,但这显然是没有意义的。如上就是ROC曲线的动机。

2.2ROC的定义

关于两类分类问题,原始类为positive、negative,分类后的类别为p'、n'。排列组合后得到4种结果,如下图所示:
于是我们得到四个指标,分别为:真阳、伪阳、伪阴、真阴。ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。这两个值由上面四个值计算得到,公式如下:
TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。TPR=TP/(TP+FN)
FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。FPR=FP/(FP+TN)
放在具体领域来理解上述两个指标。如在医学诊断中,判断有病的样本。那么尽量把有病的揪出来是主要任务,也就是第一个指标TPR,要越高越好。而把没病的样本误诊为有病的,也就是第二个指标FPR,要越低越好。不难发现,这两个指标之间是相互制约的。如果某个医生对于有病的症状比较敏感,稍微的小症状都判断为有病,那么他的第一个指标应该会很高,但是第二个指标也就相应地变高。最极端的情况下,他把所有的样本都看做有病,那么第一个指标达到1,第二个指标也为1。

2.3ROC的图形化表示

我们以FPR为横轴,TPR为纵轴,得到如下ROC空间:
我们可以看出:左上角的点(TPR=1,FPR=0),为完美分类,也就是这个医生医术高明,诊断全对;点A(TPR>FPR),医生A的判断大体是正确的。中线上的点B(TPR=FPR),也就是医生B全都是蒙的,蒙对一半,蒙错一半;下半平面的点C(TPR<FPR),这个医生说你有病,那么你很可能没有病,医生C的话我们要反着听,为真庸医。
上图中一个阈值,得到一个点。现在我们需要一个独立于阈值的评价指标来衡量这个医生的医术如何,也就是遍历所有的阈值,得到ROC曲线。还是一开始的那幅图,假设如下就是某个医生的诊断统计图,直线代表阈值。我们遍历所有的阈值,能够在ROC平面上得到如下的ROC曲线。

  曲线距离左上角越近,证明分类器效果越好。

如上,是三条ROC曲线,在0.23处取一条直线。那么,在同样的FPR=0.23的情况下,红色分类器得到更高的TPR。也就表明,ROC越往上,分类器效果越好。我们用一个标量值AUC来量化他。

3.AUC值

3.1AUC值的定义

AUC值为ROC曲线所覆盖的区域面积,显然,AUC越大,分类器分类效果越好。
AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

3.2AUC值的物理意义

假设分类器的输出是样本属于正类的socre(置信度),则AUC的物理意义为,任取一对(正、负)样本,正样本的score大于负样本的score的概率。

3.3AUC值的计算

(1)第一种方法:AUC为ROC曲线下的面积,那我们直接计算面积可得。面积为一个个小的梯形面积之和,计算的精度与阈值的精度有关。
(2)第二种方法:根据AUC的物理意义,我们计算正样本score大于负样本的score的概率。取N*M(N为正样本数,M为负样本数)个二元组,比较score,最后得到AUC。时间复杂度为O(N*M)。
(3)第三种方法:与第二种方法相似,直接计算正样本score大于负样本的score的概率。我们首先把所有样本按照score排序,依次用rank表示他们,如最大score的样本,rank=n(n=N+M),其次为n-1。那么对于正样本中rank最大的样本(rank_max),有M-1个其他正样本比他score小,那么就有(rank_max-1)-(M-1)个负样本比他score小。其次为(rank_second-1)-(M-2)。最后我们得到正样本大于负样本的概率为:
时间复杂度为O(N+M)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445523.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设置SSH免密码自动登录(使用别名)

每次登录服务器都要写一大串的用户名&#xff08;username服务器地址&#xff09;和登录密码十分的繁琐&#xff0c;所以本文就告诉大家如何通过修改配置文件&#xff0c;达到只需要输入&#xff1a;ssh jack(你起的别名)就可以一键登录到服务器中。 1.创建公钥&#xff08;相当…

串的定长表示

思想和代码都不难&#xff0c;和线性表也差不多&#xff0c;串本来就是数据受限的线性表。 串连接&#xff1a; #include <stdio.h> #include <string.h> //串的定长顺序存储表示 #define MAXSTRLEN 255 //用户可在255以内定义最大串长 typedef unsigned cha…

周志华《Machine Learning》 学习笔记系列(1)--绪论

机器学习致力于研究如何通过计算手段&#xff0c;利用经验来改善系统本身的性能&#xff0c;在计算机系统中&#xff0c;“经验”通常是以“数据”形式存在的&#xff0c;所以&#xff0c;机器学习的主要内容是关于在计算机上从数据中产生“模型”的算法&#xff0c;即学习算法…

轻松理解牛顿迭代法且用其求平方根

牛顿迭代法概述 牛顿迭代法&#xff08;Newton’s method&#xff09;又称为牛顿-拉弗森方法&#xff08;Newton-Raphson method&#xff09;&#xff0c;它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 牛顿迭代公式 设rrr是f(x)0f(x)0f(x)0的根&#…

map+DP leetcode446

如果数字序列由至少三个元素组成并且任何两个连续元素之间的差异相同&#xff0c;则称为算术序列。 例如&#xff0c;这些是算术序列&#xff1a; 1&#xff0c;3&#xff0c;5&#xff0c;7&#xff0c;9 7&#xff0c;7,7&#xff0c;7 3&#xff0c;-1&#xff0c;-5&am…

如何使用cookie信息,完成自动登录

在做爬虫任务的时候&#xff0c;我们常常会遇到很多网页必须登录后&#xff0c;才可以开放某些页面。所以登录是爬取网页的第一步。但是&#xff0c;通过post表单&#xff08;包含用户名和密码&#xff09;的方法&#xff0c;对于那些不需要输入比较复杂的验证码的网页&#xf…

Spring Cloud 学习笔记(1 / 3)

Spring Cloud 学习笔记&#xff08;2 / 3&#xff09; Spring Cloud 学习笔记&#xff08;3 / 3&#xff09; ---01_前言闲聊和课程说明02_零基础微服务架构理论入门03_第二季Boot和Cloud版本选型04_Cloud组件停更说明05_父工程Project空间新建06_父工程pom文件07_复习Depend…

后缀树/后缀数组

字典树&#xff1a;https://blog.csdn.net/hebtu666/article/details/83141560 后缀树&#xff1a;后缀树&#xff0c;就是把一串字符的所有后缀保存并且压缩的字典树。 相对于字典树来说&#xff0c;后缀树并不是针对大量字符串的&#xff0c;而是针对一个或几个字符串来解决…

kaggle(02)-房价预测案例(基础版)

房价预测案例 Step 1: 检视源数据集 import numpy as np import pandas as pd读入数据 一般来说源数据的index那一栏没什么用&#xff0c;我们可以用来作为我们pandas dataframe的index。这样之后要是检索起来也省事儿。 有人的地方就有鄙视链。跟知乎一样。Kaggle的也是个处…

为什么Python中整型不会溢出

前言 本次分析基于 CPython 解释器&#xff0c;python3.x版本 在python2时代&#xff0c;整型有 int 类型和 long 长整型&#xff0c;长整型不存在溢出问题&#xff0c;即可以存放任意大小的整数。在python3后&#xff0c;统一使用了长整型。这也是吸引科研人员的一部分了&am…

如何使用github中的pull request功能?

* pull request是社会化编程的象征&#xff0c;通过这个功能&#xff0c;你可以参与到别人开发的项目中&#xff0c;并做出自己的贡献。pull request是自己修改源代码后&#xff0c;请求对方仓库采纳的一种行为*–《github入门与实践》 下面具体说一下github中使用pull reque…

「假装努力」

有多少人在「假装努力」&#xff1f; 又有多少人在「真正成长」&#xff1f; 再努力努力 回想起当年毕业后&#xff0c;在北京和室友合租的日子。 那时&#xff0c;我在工作&#xff0c;室友在培训。 一天&#xff0c;我下班回来&#xff0c;听见他在电话里和家人争吵&…

如何阅读论文?

本文主要讲述了如何才能高效的阅读一篇论文&#xff01;&#xff01;

贪吃蛇js

python都学不懂&#xff0c;c又不会&#xff0c;只能写写js来维持生活了。555555 js&#xff1a; window.onload function() {var wrap document.getElementsByClassName("wrap")[0];var uls document.getElementsByClassName("sbody")[0];var hand …

Android studio安装过程中入的坑的记录与记录

Android studio安装过程中入的坑的记录与记录 * 由于最近项目的需求&#xff0c;所以最近一直在配置安卓的开发环境&#xff0c;之前用的是Eclipse ADT的模式开发的&#xff0c;配置环境也花了一些时间&#xff0c;但是由于谷歌大力扶持它的亲儿子Android Studio&#xff0c;…

动态规划基础水题提纲

提纲 汉诺塔 汉诺塔&#xff1a;汉诺塔&#xff08;又称河内塔&#xff09;问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子&#xff0c;在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新…

数据结构课上笔记8

串的概念&#xff1a;串&#xff08;字符串&#xff09;&#xff1a;是由 0 个或多个字符组成的有限序列。 通常记为&#xff1a;s ‘ a1 a2 a3 … ai …an ’ ( n≥0 )。 串的逻辑结构和线性表极为相似。 一些串的类型&#xff1a; 空串&#xff1a;不含任何字符的串&#x…

数据结构课上笔记9

数组&#xff1a;按一定格式排列起来的具有相同类型的数据元素的集合。 二维数组&#xff1a;若一维数组中的数据元素又是一维数组结构&#xff0c;则称为二维数组。 同理&#xff0c;推广到多维数组。若 n -1 维数组中的元素又是一个一维数组结构&#xff0c;则称作 n 维数组…

pySerial -- Python的串口通讯模块

pySerial Overview This module encapsulates the access for the serial port. It provides backends for Python running on Windows, Linux, BSD (possibly any POSIX compliant system), Jython and IronPython (.NET and Mono). The module named “serial” automatica…

串的堆分配实现

今天&#xff0c;线性结构基本就这样了&#xff0c;以后&#xff08;至少是最近&#xff09;就很少写线性基础结构的实现了。 串的类型定义 typedef struct {char *str;int length; }HeapString; 初始化串 InitString(HeapString *S) {S->length0;S->str\0; } 长度 …