Harris的角点检测和特征匹配

一.特征检测(提取)

        基于特征的图像配准方法是图像配准中最常见的方法之一。它不是直接利用图像像素值,二十通过像素值导出的符号特征(如特征点、特征线、特征区域)来实现图像配准,因此可以克服利用灰度信息进行图像配准的缺点,主要体现在以下三个方面:(1)利用特征点而不是图像灰度信息,大大减少了在匹配过程中的计算量;(2)特征点的匹配度量值相对位置变化比较敏感,可以提高匹配的精度;(3)特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变以及遮挡等都有较好的适应能力。

       一类重要的点特征:角点(corner points),其定义主要有以下:

 

 

  1.  局部窗口沿各方向移动,灰度均产生明显变化的点      
  2. 图像局部曲率突变的点
  3. 典型的角点检测算法:Harris角点检测、CSS角点检测
  4. Harris角点检测基本思想
    从图像局部的小窗口观察图像特征,角点定义:窗口向任意方向的移动都导致图像灰度的明显变化(如下图)

 

Harris检测:数学表达

 

将图像窗口平移[u,v]产生灰度变化E(u,v)

 

由泰勒展开,得:

 

利用角点响应函数:

 

判断特征点是否为角点的依据:R只与M值有关,R为大数值正数时特征点为角点,R为大数值负数时为边缘,R为小数值时为平坦区,如下图:

寻找R位于一定阈值之上的局部最大值,去除伪角点。

Harris角点检测流程:
1.通过高斯函数的导数对原始图像进行卷积计算;图像在水平方向和垂直方向的导数Ix和Iy;
2.计算对应这些梯度外积即(Ix2 、Iy2、IxIy)三个图像如下图:
4.使用高斯函数对以上图像进行卷积滤波;
3.使用前面的公式计算角点响应函数R值;
5.对计算到的角点图像进行局部极大值抑制。

 
  1.  

二、特征描述 

 在检测到特征(关键点)之后,我们必须匹配它们,也就是说,我们必须确定哪些特征来自于不同图像中的对应位置。物体识别的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的图像相匹配。而为了进行匹配,我们首先要合理的表示图像。

SIFT(Scale invariant feature transform)特征通过计算检测到的关键点周围16x16窗口内每一个像素的梯度得到。在这里我只是简单的实现类似于SIFT特征描述子的特征描述方法,即我通过每4x4的四分之一象限,通过将加权梯度值加到直方图八个方向区间中的一个,计算出一个梯度方向直方图,因此在每一个特征点都会形成一个128维的非负值形成了一个原始版本的SIFT描述子向量如下图,并且将其归一化以减少对比度和增益的影响,最后为了使描述子对其他各种光度变化鲁棒,再将这些值以0.2截尾,然后再归一化到单位长度。

 

 

三、特征匹配

一旦我们从两幅或者多幅图像中提取到特征及其描述子后,下一步就是要在这些图像之间建立一些初始特征之间的匹配。
匹配策略一:对前面提取到的两幅图像的128维特征描述子向量做欧式距离度量,最简单的一个策略就是先设定一个阈值(最大距离),然后返回在这个阈值范围之内的另外一个图像中的所有匹配。
匹配策略二:做最近邻匹配,即比较最近邻距离和次近邻距离的比值,即最近邻比率(NNDR)。

匹配策略一的缺点是,如果阈值设得太高,就会产生误报,也就是说会出现不正确的匹配。如果阈值设得太低,就会产生很多“漏报”,也就是说,很多正确的匹配被丢失。

固定阈值,最近邻和最近邻比率匹配。在固定阈值(虚线圆)下,描述子DA未能与DB匹配,DD错误地与DC和DE匹配。如果我们选择最近邻,DA和DE匹配。使用最近邻比率(NNDR),小的NNDR(d1/d2)正确地将DA和DB匹配,大的NNDR(d1'/d2')正确地拒绝DD与DC、DE的匹配。

代码如下:

https://download.csdn.net/download/pbymw8iwm/10659247

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444705.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开始入坑深度学习(DeepLearning)

现在游戏越来越难做,国家广电总局审核越来越变态,国家各种打压游戏,游戏产业也成为教育失败的背锅侠,所以本人现在开始做深度学习方向。 深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、The…

《盘点那些秀你一脸的秒天秒地算法》(1)

本系列坚持格式:1个抖机灵算法2个较简单但是天秀的算法1个较难天秀算法。 bogo排序 Bogo排序(Bogo-sort),又被称为猴子排序,是一种恶搞排序算法。 将元素随机打乱,然后检查其是否符合排列顺序,若否,则继续…

《盘点那些秀你一脸的秒天秒地算法》(3)

斐波那契之美 斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。 这个数列就是1、1、2、3、5、8、13…

《盘点那些秀你一脸的秒天秒地算法》(4)

防止新手错误的神级代码 #define ture true #define flase false #difine viod void #define mian main #define ; ; 以后有新手问题就把这几行代码给他就好啦。 不用额外空间交换两个变量 a 5 b 8 #计算a和b两个点到原点的距离之和,并且赋值给…

为啥用redis解决会话呢?

什么是会话? 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话。 •会话过程中要解决的一些问题? –每个用户不可避免各自会…

听说你还在纠结自己没访问量?成不了“博客专家”?

一、提高浏览量的技巧 相信很多人都这么想过:“我文章写的这么好,怎么就没人看呢?”; 或者这样想过:“这文章写得明明比我烂很多,凭什么这么多浏览量?”; 虽然在我看来这是极其严…

关系数据库——范式/反范式的利弊权衡和建议

范式(避免数据冗余和操作异常) 函数依赖 A->B A和B是两个属性集,来自同一关系模式,对于同样的A属性值,B属性值也相同 平凡的函数依赖 X->Y,如果Y是X的子集 非平凡的函数依赖 X->Y&#xff…

pytorch学习入门 (二) Variable(变量)

Variable(变量) autograd.Variable 是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward() 方法, 然后所有的梯度计算会自动进行. 你还可以通过 .data 属性来访问原始的张量, 而关于该 variable&#…

leetcode1033. 移动石子直到连续

三枚石子放置在数轴上&#xff0c;位置分别为 a&#xff0c;b&#xff0c;c。 每一回合&#xff0c;我们假设这三枚石子当前分别位于位置 x, y, z 且 x < y < z。从位置 x 或者是位置 z 拿起一枚石子&#xff0c;并将该石子移动到某一整数位置 k 处&#xff0c;其中 x &…

pytorch学习 训练一个分类器(五)

训练一个分类器 就是这个, 你已经看到了如何定义神经网络, 计算损失并更新网络的权重. 现在你可能会想, 数据呢? 一般来说, 当你不得不处理图像, 文本, 音频或者视频数据时, 你可以使用标准的 Python 包将数据加载到一个 numpy 数组中. 然后你可以将这个数组转换成一个 to…

【软考中级】网络工程师:8.网络安全

本章考察内容比较广泛&#xff0c;考题对知识点都会有所涉及。 8.1 网络安全的基本概念 8.1.1 网络安全威胁的类型 窃听 这种情况发生在广播式网络系统中&#xff0c;每个节点都可以读取数据&#xff0c;实现搭线窃听、安装通信监视器和读取网上的信息等。 假冒 当一个实体…

caffe网络结构图绘制

绘制网络图通常有两种方法&#xff1a; 一种是利用python自带的draw_net.py&#xff0c;首先安装两个库&#xff1a; sudo apt-get install graphviz sudo pip install pydot 接下来就可以用python自带的draw_net.py文件来绘制网络图了。 draw_net.py执行时带三个参数&…

理解Caffe的网络模型

目录 1. 初见LeNet原始模型2. Caffe LeNet的网络结构3. 逐层理解Caffe LeNet 3.1 Data Layer3.2 Conv1 Layer3.3 Pool1 Layer3.4 Conv2 Layer3.5 Pool2 Layer3.6 Ip1 Layer3.7 Relu1 Layer3.8 Ip2 Layer3.9 Loss Layer 1. 初见LeNet原始模型 Fig.1. Architecture of original …

caffe开始训练自己的模型(转载并验证过)

学习caffe中踩了不少坑&#xff0c;这里我参考了此博主的文章&#xff0c;并体会到了如何训练自己的模型&#xff1a;http://www.cnblogs.com/denny402/p/5083300.html 学习caffe的目的&#xff0c;不是简单的做几个练习&#xff0c;最终还是要用到自己的实际项目或科研中。因…

图像拼接(一):柱面投影+模板匹配+渐入渐出融合

这种拼接方法的假设前提是&#xff1a;待拼接的两幅图像之间的变换模型是平移模型&#xff0c;即两幅图像同名点位置之间只相差两个未知量&#xff1a;ΔxΔx 和ΔyΔy&#xff0c;自由度为2&#xff0c;模型收得最紧。所以只有所有图像都是用同一水平线或者同一已知倾斜角的摄…

图像拼接(二):OpenCV同时打开两个摄像头捕获视频

使用OpenCV实现同时打开两个USB摄像头&#xff0c;并实时显示视频。如果未检测有两个摄像头&#xff0c;程序会结束并发出“摄像头未安装好”的警告。这里推荐一个小巧的摄像头视频捕捉软件&#xff1a;amcap&#xff0c;使用它可以方便的检查每个摄像头是否能正常工作。 捕获…

elasticsearch的Linux下安装报错问题解决

1.启动报错如下: vim /etc/security/limits.conf 然后修改如下 * soft nofile 65536 * hard nofile 65536sudo vi /etc/pam.d/common-session 添加 session required pam_limits.so sudo vi /etc/pam.d/common-session-noninteractive 添加 session required pam_limits.so…

Fiddler抓包工具使用

先下载Fiddler 欢迎关注我的新微信公众号 ipgame&#xff0c;有什么问题可以提供交流的平台&#xff0c;欢迎大家讨论。 电脑最好是笔记本&#xff0c;这样能和手机保持统一局域网内&#xff1b;其他不多说&#xff0c;直接说步骤了。 一.对PC&#xff08;笔记本&#xff0…

Tensorboard--模型可视化工具

Tensorboard1.tensorboard in tensorflow1.1 tensorboard的启动过程1.2 tf.summary 可视化类型1.3 tf.summary 使用demo2.tensorboard in pytorch2.1 SummaryWriter 使用demo12.2 tSummaryWriter 使用demo22.3 tensorboard 数据再读取tensorboard in tensorflow &#xff1a;te…

opencv findContours 报错_acrt_first_block == header

报错_acrt_first_block header 之前一直使用OpenCV3.3VS2015 void AOIAlgorithm::findUnits(Mat& blkGray, vector<vector<cv::Point>> & blkContours) {Mat blkOBW;blur(blkGray, blkGray, cv::Size(5, 5));threshold(blkGray, blkOBW, 0, 255, CV_THR…