leetcode172. 阶乘后的零 最快算法

给定一个整数 n,返回 n! 结果尾数中零的数量。

示例 1:

输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。
示例 2:

输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.
说明: 你算法的时间复杂度应为 O(log n) 。

思路:10=2*5,而因数中2一定比5多,所以我们找5的个数即可。

public int trailingZeroes(int n) {int count = 0;while (n > 0) {count += n / 5;n = n / 5;}return count;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win10 连接 Ubuntu16.04.3(通过Xdrp连接xfce4界面)

Win10 连接 Ubuntu16.04.3(通过Xdrp连接xfce4界面) sudo apt-get install xrdp sudo apt-get install vnc4server sudo apt-get install xubuntu-desktop echo "xfce4-session" >~/.xsession sudo apt-get install dconf editor sudo dconf editor(或者在搜索…

Linux(17)-

Make编译机制,Configure

听说你还在纠结自己没访问量?成不了“博客专家”?

一、提高浏览量的技巧 相信很多人都这么想过:“我文章写的这么好,怎么就没人看呢?”; 或者这样想过:“这文章写得明明比我烂很多,凭什么这么多浏览量?”; 虽然在我看来这是极其严…

推荐系统(6)-注意力机制+深度推荐模型、强化学习推荐系统

注意力机制深度推荐模型、强化学习推荐系统1.AFM -20172.DIN-20173.DIEN-20194. DRN-20181.AFM -2017 Attention factorization machines–浙江大学–基于模型结构的改进 引入注意力机制FM, 可视为NFM模型的改进。给特征交叉池化后的特征向量施加不同的注意力权重。…

Caffe安装的坑整理

怎么说了,入了深度学习的坑,就要踩一踩才算你入门,这里我整理了我在安装学习caffe自己遇到的坑: 1.Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture compute_20 仔细查看了一下 Makefile.config 中 CUDA_ARCH 设置未按规定设置: # CUDA architecture se…

leetcode74. 搜索二维矩阵 ,你见过吗

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性: 每行中的整数从左到右按升序排列。 每行的第一个整数大于前一行的最后一个整数。 示例 1: 输入: matrix [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34,…

pytorch学习 入门篇(一)

PyTorch 是什么? 它是一个基于 Python 的科学计算包, 其主要是为了解决两类场景: NumPy 的替代品, 以使用 GPU 的强大加速功能一个深度学习研究平台, 提供最大的灵活性和速度Tensors(张量) Tensors 与 NumPy 的 ndarrays 非常相似, 除此之外还可以在 GPU 上使用张量来加速…

关系数据库——范式/反范式的利弊权衡和建议

范式(避免数据冗余和操作异常) 函数依赖 A->B A和B是两个属性集,来自同一关系模式,对于同样的A属性值,B属性值也相同 平凡的函数依赖 X->Y,如果Y是X的子集 非平凡的函数依赖 X->Y&#xff…

pytorch学习入门 (二) Variable(变量)

Variable(变量) autograd.Variable 是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward() 方法, 然后所有的梯度计算会自动进行. 你还可以通过 .data 属性来访问原始的张量, 而关于该 variable&#…

Linux(x)-

Ubuntu装机后的基础应用

pytorch入门学习(三) 神经网络

神经网络可以使用 torch.nn 包构建. autograd 实现了反向传播功能, 但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn 是专门为神经网络设计的模块化接口. nn 构建于 Autograd 之上, 可用来定义和运行神经网络. nn.Module 是 nn 中最重要的类, 可把它看成是一个…

leetcode1033. 移动石子直到连续

三枚石子放置在数轴上&#xff0c;位置分别为 a&#xff0c;b&#xff0c;c。 每一回合&#xff0c;我们假设这三枚石子当前分别位于位置 x, y, z 且 x < y < z。从位置 x 或者是位置 z 拿起一枚石子&#xff0c;并将该石子移动到某一整数位置 k 处&#xff0c;其中 x &…

pytorch学习 训练一个分类器(五)

训练一个分类器 就是这个, 你已经看到了如何定义神经网络, 计算损失并更新网络的权重. 现在你可能会想, 数据呢? 一般来说, 当你不得不处理图像, 文本, 音频或者视频数据时, 你可以使用标准的 Python 包将数据加载到一个 numpy 数组中. 然后你可以将这个数组转换成一个 to…

Git(6)-Git配置文件、底层操作命令

Git基本命令1. 常用(迷糊)命令-冷知识2. git 配置2.1 设置 配置文件2.2 查看 配置文件--git config -l2.3 移除 配置文件设置--unset2.3 命令别名 --alias3.git 对象 &#xff08;git底层操作命令&#xff09;3.1 初始化一个版本库3.2 新建一个简单的blob 对象3.3 基于散列值查…

【软考中级】网络工程师:8.网络安全

本章考察内容比较广泛&#xff0c;考题对知识点都会有所涉及。 8.1 网络安全的基本概念 8.1.1 网络安全威胁的类型 窃听 这种情况发生在广播式网络系统中&#xff0c;每个节点都可以读取数据&#xff0c;实现搭线窃听、安装通信监视器和读取网上的信息等。 假冒 当一个实体…

leetcode9 回文数

判断一个整数是否是回文数。回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样的整数。 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个…

caffe各层参数详解

在prototxt文件中,层都是用layer{}的结构表示,而里面包含的层的参数可以在caffe.proto文件中找到,比如说Data类型的结构由message DataParameter所定义,Convolution类型的结构由message ConvolutionParameter所定义。 具体说明下: name表示该层的名称type表示该层的类型,…

caffe网络结构图绘制

绘制网络图通常有两种方法&#xff1a; 一种是利用python自带的draw_net.py&#xff0c;首先安装两个库&#xff1a; sudo apt-get install graphviz sudo pip install pydot 接下来就可以用python自带的draw_net.py文件来绘制网络图了。 draw_net.py执行时带三个参数&…

Git(7)-Git commit

Git提交1.识别不同的提交1.1绝对提交名-ID1.2 引用和符号引用--HEAD2.查看提交的历史记录-git log3.提交图-gitk4.提交的范围4.1 X..Y4.1 X...Y5.查找bad 提交--git bisect6.查看代码修改者-git blame命令概览git commit -a # 直接提交修改和删除文件有效加了-a&#xff0c;在 …

leetcode111. 二叉树的最小深度

给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回它的最小深度 2. 思路&#xff1a…