开始入坑深度学习(DeepLearning)

       现在游戏越来越难做,国家广电总局审核越来越变态,国家各种打压游戏,游戏产业也成为教育失败的背锅侠,所以本人现在开始做深度学习方向。 

   深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon,等等。然而TensorFlow却杀出重围,在关注度和用户数上都占据绝对优势,大有一统江湖之势。表2-1所示为各个开源框架在GitHub上的数据统计(数据统计于2017年1月3日),可以看到TensorFlow在star数量、fork数量、contributor数量这三个数据上都完胜其他对手。

    图片描述

TensorFlow

TensorFlow是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写C++或CUDA代码。它和Theano一样都支持自动求导,用户不需要再通过反向传播求解梯度。其核心代码和Caffe一样是用C++编写的,使用C++简化了线上部署的复杂度,并让手机这种内存和CPU资源都紧张的设备可以运行复杂模型(Python则会比较消耗资源,并且执行效率不高)。除了核心代码的C++接口,TensorFlow还有官方的Python、Go和Java接口,是通过SWIG(Simplified Wrapper and Interface Generator)实现的,这样用户就可以在一个硬件配置较好的机器中用Python

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PRML(4)--Chapter2(下)-非参数估计

PRML第二章下-非参数估计1.直方图2. 核方法3. K近邻概率密度建模-参数化方法-概率密度的形式一定,由数据集确定密度中的参数即可。 局限性–概率模型选的不对,不能够描述数据模态 此时,介绍一下非参数方法–直方图,核方法&#…

《盘点那些秀你一脸的秒天秒地算法》(1)

本系列坚持格式:1个抖机灵算法2个较简单但是天秀的算法1个较难天秀算法。 bogo排序 Bogo排序(Bogo-sort),又被称为猴子排序,是一种恶搞排序算法。 将元素随机打乱,然后检查其是否符合排列顺序,若否,则继续…

caffe安装篇(一)

caffe我选择使用ubuntu源码安装,所以先执行: sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev protobuf-compiler libhdf5-serial-dev sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev prot…

caffe2安装篇(三)通过docker安装

用普通的安装方式走了不少弯路,感觉还是用docker方便: 参考的是https://hub.docker.com/r/caffe2ai/caffe2/ Latest docker pull caffe2ai/caffe2 Comes with GPU support, CUDA 8.0, cuDNN 7, all options, and tutorial files. Uses Caffe2 v0.8.1. GPU images (for us…

《盘点那些秀你一脸的秒天秒地算法》(3)

斐波那契之美 斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。 这个数列就是1、1、2、3、5、8、13…

Linux(15)-

Linux下的编程开发

《盘点那些秀你一脸的秒天秒地算法》(4)

防止新手错误的神级代码 #define ture true #define flase false #difine viod void #define mian main #define ; ; 以后有新手问题就把这几行代码给他就好啦。 不用额外空间交换两个变量 a 5 b 8 #计算a和b两个点到原点的距离之和,并且赋值给…

Linux(16)-

Vim编辑器的使用

php生成有复杂结构的excel文档

以前都用PHPExcel等工具来生成Excel,但是我们有时候需要非常复杂的样式,比如有合并单元格和拆分单元格,甚至有颜色,行间距之类的,这样做起来很费劲,而且你如果使用插件,你也需要学习这里我们可以…

caffe2安装篇(二) ubuntu16.04 安装方法

caffe2 ubuntu16.04 安装方法 Caffe2的安装相比于caffe在安装的时候更加简便,略去了Makefile.config的各种配置,对于有无GPU以及各种可选库例如opencv,anaconda的支持也更简单。(其实你直接装好库以后make就好,以GPU为例,在make的时候,自动检测你是否安装了CUDA,若没有…

为啥用redis解决会话呢?

什么是会话? 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话。 •会话过程中要解决的一些问题? –每个用户不可避免各自会…

推荐系统(5)-深度推荐模型-AutoRec、DeepCrossing、NeuralCF、PNN、WideDeep、FNN、DeepFM、NFM

GBDTLR1. AutoRec-20152. Deep Crossing-20163. NeuralCF-20164. PNN-20165. Wide&Deep-20166. Deep&Cross-20177.FM深度学习7.1 FNN-20167.2 DeepFM-20177.3 NFM-2017《深度学习/推荐系统》读书笔记2016年开始,推荐系统和计算广告全面进入深度学习时代。 &…

关于在安装caffe2环境中遇到的坑整理(欢迎入坑讨论)

1.ImportError: cannot import name caffe2_pb2 测试caffe2的pytorch环境是否正常的时候使用 root@lxsj-ThinkStation:~/pytorch# python Python 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", &…

leetcode172. 阶乘后的零 最快算法

给定一个整数 n,返回 n! 结果尾数中零的数量。 示例 1: 输入: 3 输出: 0 解释: 3! 6, 尾数中没有零。 示例 2: 输入: 5 输出: 1 解释: 5! 120, 尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n) 。 思路:102*5,而因数中2一定比…

Win10 连接 Ubuntu16.04.3(通过Xdrp连接xfce4界面)

Win10 连接 Ubuntu16.04.3(通过Xdrp连接xfce4界面) sudo apt-get install xrdp sudo apt-get install vnc4server sudo apt-get install xubuntu-desktop echo "xfce4-session" >~/.xsession sudo apt-get install dconf editor sudo dconf editor(或者在搜索…

Linux(17)-

Make编译机制,Configure

听说你还在纠结自己没访问量?成不了“博客专家”?

一、提高浏览量的技巧 相信很多人都这么想过:“我文章写的这么好,怎么就没人看呢?”; 或者这样想过:“这文章写得明明比我烂很多,凭什么这么多浏览量?”; 虽然在我看来这是极其严…

推荐系统(6)-注意力机制+深度推荐模型、强化学习推荐系统

注意力机制深度推荐模型、强化学习推荐系统1.AFM -20172.DIN-20173.DIEN-20194. DRN-20181.AFM -2017 Attention factorization machines–浙江大学–基于模型结构的改进 引入注意力机制FM, 可视为NFM模型的改进。给特征交叉池化后的特征向量施加不同的注意力权重。…

Caffe安装的坑整理

怎么说了,入了深度学习的坑,就要踩一踩才算你入门,这里我整理了我在安装学习caffe自己遇到的坑: 1.Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture compute_20 仔细查看了一下 Makefile.config 中 CUDA_ARCH 设置未按规定设置: # CUDA architecture se…

leetcode74. 搜索二维矩阵 ,你见过吗

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性: 每行中的整数从左到右按升序排列。 每行的第一个整数大于前一行的最后一个整数。 示例 1: 输入: matrix [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34,…