Bandit算法原理及Python实战

目录

1)什么是Bandit算法

为选择而生。

Bandit算法与推荐系统

怎么选择Bandit算法?

2)常用Bandit算法

Thompson sampling算法

UCB算法

Epsilon-Greedy算法

Greedy算法

3)Bandit算法Python实战

参考资料:


推荐系统里面有两个经典问题:EE和冷启动。Bandit算法是一种简单的在线学习算法,常常用于尝试解决这两个问题,本文为你介绍基础的Bandit算法原理及Python实战。

1)什么是Bandit算法

为选择而生

我们会遇到很多选择的场景。上哪个大学,学什么专业,去哪家公司,中午吃什么等等。这些事情,都让选择困难症的我们头很大。那么,有算法能够很好地对付这些问题吗?

当然有!那就是Bandit算法。

Bandit算法来源于历史悠久的赌博学,它要解决的问题是这样的:

一个赌徒,要去摇老虎机,走进赌场一看,一排老虎机,外表一模一样,但是每个老虎机吐钱的概率可不一样,他不知道每个老虎机吐钱的概率分布是什么,那么每次该选择哪个老虎机可以做到最大化收益呢?这就是多臂赌博机问题(Multi-armed bandit problem, K-armed bandit problem, MAB)。如下图所示:

图片描述

怎么解决这个问题呢?最好的办法是去试一试,不是盲目地试,而是有策略地快速试一试,这些策略就是Bandit算法。

这个多臂问题,推荐系统里很多问题都与它类似:

  1. 假设一个用户对不同类别的内容感兴趣程度不同,那么我们的推荐系统初次见到这个用户时,怎么快速地知道他对每类内容的感兴趣程度?这就是推荐系统的冷启动。
  2. 假设我们有若干广告库存,怎么知道该给每个用户展示哪个广告,从而获得最大的点击收益?是每次都挑效果最好那个么?那么新广告如何才有出头之日?
  3. 我们的算法工程师又想出了新的模型,有没有比A/B test更快的方法知道它和旧模型相比谁更靠谱?
  4. 如果只是推荐已知的用户感兴趣的物品,如何才能科学地冒险给他推荐一些新鲜的物品?

Bandit算法与推荐系统

在推荐系统领域里,有两个比较经典的问题常被人提起,一个是EE问题,另一个是用户冷启动问题。

什么是EE问题?又叫exploit-explore问题。exploit就是:对用户比较确定的兴趣,当然要利用开采迎合,好比说已经挣到的钱,当然要花;explore就是:光对着用户已知的兴趣使用,用户很快会腻,所以要不断探索用户新的兴趣才行,这就好比虽然有一点钱可以花了,但是还得继续搬砖挣钱,不然花完了就得喝西北风。

用户冷启动问题,也就是面对新用户时,如何能够通过若干次实验,猜出用户的大致兴趣。

我想,屏幕前的你已经想到了,推荐系统冷启动可以用Bandit算法来解决一部分。

这两个问题本质上都是如何选择用户感兴趣的主题进行推荐,比较符合Bandit算法背后的MAB问题。

比如,用Bandit算法解决冷启动的大致思路如下:用分类或者Topic来表示每个用户兴趣,也就是MAB问题中的臂(Arm),我们可以通过几次试验,来刻画出新用户心目中对每个Topic的感兴趣概率。这里,如果用户对某个Topic感兴趣(提供了显式反馈或隐式反馈),就表示我们得到了收益,如果推给了它不感兴趣的Topic,推荐系统就表示很遗憾(regret)了。如此经历“选择-观察-更新-选择”的循环,理论上是越来越逼近用户真正感兴趣的Topic的,



怎么选择Bandit算法?

现在来介绍一下Bandit算法怎么解决这类问题的。Bandit算法需要量化一个核心问题:错误的选择到底有多大的遗憾?能不能遗憾少一些?

王家卫在《一代宗师》里寄出一句台词:

人生要是无憾,那多无趣?

而我说:算法要是无憾,那应该是过拟合了。

所以说:怎么衡量不同Bandit算法在解决多臂问题上的效果?首先介绍一个概念,叫做累积遗憾(regret):

图片描述

图2 积累遗憾

这个公式就是计算Bandit算法的累积遗憾,解释一下:

首先,这里我们讨论的每个臂的收益非0即1,也就是伯努利收益。

然后,每次选择后,计算和最佳的选择差了多少,然后把差距累加起来就是总的遗憾。

wB(i)是第i次试验时被选中臂的期望收益, w*是所有臂中的最佳那个,如果上帝提前告诉你,我们当然每次试验都选它,问题是上帝不告诉你,所以就有了Bandit算法,我们就有了这篇文章。

这个公式可以用来对比不同Bandit算法的效果:对同样的多臂问题,用不同的Bandit算法试验相同次数,看看谁的regret增长得慢。

那么到底不同的Bandit算法有哪些呢?

2)常用Bandit算法

Thompson sampling算法

Thompson sampling算法简单实用,因为它只有一行代码就可以实现[3]。简单介绍一下它的原理,要点如下:

  1. 假设每个臂是否产生收益,其背后有一个概率分布,产生收益的概率为p。
  2. 我们不断地试验,去估计出一个置信度较高的“概率p的概率分布”就能近似解决这个问题了。
  3. 怎么能估计“概率p的概率分布”呢? 答案是假设概率p的概率分布符合beta(wins, lose)分布,它有两个参数: wins, lose。
  4. 每个臂都维护一个beta分布的参数。每次试验后,选中一个臂,摇一下,有收益则该臂的wins增加1,否则该臂的lose增加1。
  5. 每次选择臂的方式是:用每个臂现有的beta分布产生一个随机数b,选择所有臂产生的随机数中最大的那个臂去摇。

UCB算法

UCB算法全称是Upper Confidence Bound(置信区间上界),它的算法步骤如下[4]:

  • 初始化:先对每一个臂都试一遍;
  • 按照如下公式计算每个臂的分数,然后选择分数最大的臂作为选择:

图片描述

图3 UCB算法

  • 观察选择结果,更新t和Tjt。其中加号前面是这个臂到目前的收益均值,后面的叫做bonus,本质上是均值的标准差,t是目前的试验次数,Tjt是这个臂被试次数。

这个公式反映一个特点:均值越大,标准差越小,被选中的概率会越来越大,同时哪些被选次数较少的臂也会得到试验机会。

Epsilon-Greedy算法

这是一个朴素的Bandit算法,有点类似模拟退火的思想:

  1. 选一个(0,1)之间较小的数作为epsilon;
  2. 每次以概率epsilon做一件事:所有臂中随机选一个;
  3. 每次以概率1-epsilon 选择截止到当前,平均收益最大的那个臂。

是不是简单粗暴?epsilon的值可以控制对Exploit和Explore的偏好程度。越接近0,越保守,只想花钱不想挣钱。

Greedy算法

先随机试若干次,计算每个臂的平均收益,一直选均值最大那个臂。这个算法是人类在实际中最常采用的,不可否认,它还是比随机乱猜要好。

3)Bandit算法Python实战

下面是我们模拟10000次的实验各种算法对比,可以看出Thompson算法效果是最好的。

import numpy as np
import matplotlib.pyplot as plt
import math#老虎机个数
number_of_bandits=10
#每个老虎机的臂数
number_of_arms=10
#尝试数
number_of_pulls=10000
#eps
epsilon=0.3
#最小的decay
min_temp = 0.1
#衰减率
decay_rate=0.999def pick_arm(q_values,counts,strategy,success,failure):global epsilon#随机返回一个臂if strategy=="random":return np.random.randint(0,len(q_values))#贪心算法,每次都选取收益最大的那个臂if strategy=="greedy":best_arms_value = np.max(q_values)#返回收益最大的臂的位置best_arms = np.argwhere(q_values==best_arms_value).flatten()#返回自身最大臂# 等价于return best_arms[0]return best_arms[np.random.randint(0,len(best_arms))]#加epsilon,egreedy中,epsilon不变,egreedy_decay,epsilon变化if strategy=="egreedy" or strategy=="egreedy_decay": if  strategy=="egreedy_decay": epsilon=max(epsilon*decay_rate,min_temp)if np.random.random() > epsilon:best_arms_value = np.max(q_values)best_arms = np.argwhere(q_values==best_arms_value).flatten()return best_arms[np.random.randint(0,len(best_arms))]else:#以epsilon的概率随机选取一个臂return np.random.randint(0,len(q_values))#ucb,按照ucb公式,算每个臂的收益,取最大的收益的臂/1000次除以10=1000if strategy=="ucb":total_counts = np.sum(counts)q_values_ucb = q_values + np.sqrt(np.reciprocal(counts+0.001)*2*math.log(total_counts+1.0))best_arms_value = np.max(q_values_ucb)best_arms = np.argwhere(q_values_ucb==best_arms_value).flatten()return best_arms[np.random.randint(0,len(best_arms))]#thompson,利用beta分布选择臂if strategy=="thompson":sample_means = np.zeros(len(counts))for i in range(len(counts)):sample_means[i]=np.random.beta(success[i]+1,failure[i]+1)return np.argmax(sample_means)fig = plt.figure()
ax = fig.add_subplot(111)
for st in ["greedy","random","egreedy","egreedy_decay","ucb","thompson"]:#定义 bandits个数*拉的次数的数组(10,10000)best_arm_counts = np.zeros((number_of_bandits,number_of_pulls))#对于每个老虎机来说(0,10)for i in range(number_of_bandits):#随机一个老虎机10个臂的收益w,保存最大收益arm_means = np.random.rand(number_of_arms)best_arm = np.argmax(arm_means)#初始化臂的收益(10)为零q_values = np.zeros(number_of_arms)#初始化臂的拉动次数(10次)counts = np.zeros(number_of_arms)#初始化臂的成功次数success=np.zeros(number_of_arms)#初始化臂的失败次数failure=np.zeros(number_of_arms)#对于每次拉动for j in range(number_of_pulls):#根据不同的策略,选择臂aa = pick_arm(q_values,counts,st,success,failure)#当前臂a的收益,二项分布,收益为1或0reward = np.random.binomial(1,arm_means[a])#臂的次数+1counts[a]+=1.0#更新当前臂的收益(平均收益)q_values[a]+= (reward-q_values[a])/counts[a]#记录成功的收益success[a]+=reward#记录失败的收益failure[a]+=(1-reward)#更新best_arm_counts[i][j]best_arm_counts[i][j] = counts[best_arm]*100.0/(j+1)epsilon=0.3#横纵坐标ys = np.mean(best_arm_counts,axis=0)xs = range(len(ys))ax.plot(xs, ys,label = st)plt.xlabel('Steps')
plt.ylabel('Optimal pulls')plt.tight_layout()
plt.legend()
plt.ylim((0,110))
plt.show() 

参考资料:

[1] https://blog.csdn.net/heyc861221/article/details/80129310

[2] https://en.wikipedia.org/wiki/Thompson_sampling

[3] http://nbviewer.jupyter.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter6_Priorities/Chapter6.ipynb#

[4] https://blog.csdn.net/a358463121/article/details/52562940

[5] https://blog.csdn.net/z1185196212/article/details/53374194

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ava容器类4:Queue深入解读

Collection的其它两大分支:List和Set在前面已近分析过,这篇来分析一下Queue的底层实现。 前三篇关于Java容器类的文章: java容器类1:Collection,List,ArrayList,LinkedList深入解读 java容器类2:Map及HashMap深入解…

Waymo离线点云序列3D物体检测网络 (3D Auto Labeling): Offboard 3D Object Detection from Point Cloud Sequences

本文介绍一篇Waymo基于点云序列的3D物体检测网络:3D Auto Labeling,论文已收录于CVPR 2021。 这里重点是理解本文提出的 Object-centric Auto Labeling。 论文链接为:https://arxiv.org/abs/2103.05073 2021-09-02补充:本文作者…

Waymo自动驾驶数据集介绍与使用教程

本文将对Waymo自动驾驶数据集(Waymo Open Dataset)进行介绍。 论文链接为:https://arxiv.org/abs/1912.04838v7 项目链接为:https://github.com/waymo-research/waymo-open-dataset 数据集链接为:https://waymo.com…

Java 并发基础——线程安全性

线程安全:多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类都能表现出正确的行为,那么久称这个类是线程安全的。 在线程安全类中封…

详解一阶段3D物体检测网络 SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud

本文介绍一篇一阶段的3D物体检测网络:SE-SSD,论文已收录于 CVPR 2021。 这里重点是理解本文提出的 Consistency Loss 、Orientation-Aware Distance-IoU Loss、Shape-Aware Data Augmentation。 论文链接为:https://arxiv.org/pdf/2104.0980…

详解3D点云分割网络 Cylindrical and Asymmetrical 3D Convolution Networksfor LiDAR Segmentation

本文介绍一篇3D点云分割网络:Cylinder3D,论文已收录于 CVPR 2021。 这里重点是理解本文提出的 Cylindrical Partition 和 Asymmetrical 3D Convolution Network。 论文链接为:https://arxiv.org/pdf/2011.10033.pdf 项目链接为:…

自动驾驶3D物体检测研究综述 3D Object Detection for Autonomous Driving: A Survey

本文介绍一篇最新的自动驾驶3D物体检测研究综述(2021年6月份发布),来源于中国人民大学,论文共26页,99篇参考文献。 论文链接为:https://arxiv.org/pdf/2106.10823.pdf 0. Abstract 自动驾驶被看作是避免人…

Java中接口的多继承

我们知道Java的类只能继承一个类,但可以实现多个接口。但是你知道么?Java中的接口却可以继承多个接口。本文就来说一说Java中接口的多继承。 进入主题之前,先扩展一下。Java为什么只支持单继承呢? 我们不妨假设Java支持多继承&a…

详解基于IMU/GPS的行人定位: IMU/GPS Based Pedestrian Localization

本文介绍一篇使用 IMU/GPS 数据融合的行人定位论文,这里重点是理解本文提出的 Stop Detection 和 GPS Correction。 论文地址为:https://www.researchgate.net/publication/261452498_IMUGPS_based_pedestrian_localization 1. Introduction 低成本的 …

每次maven刷新jdk都要重新设置

pom.xml <java.version>17</java.version> 改为<java.version>1.8</java.version>

【CodeForces - 706D】Vasiliy's Multiset(01字典树)

题干&#xff1a; Author has gone out of the stories about Vasiliy, so here is just a formal task description. You are given q queries and a multiset A, initially containing only integer 0. There are three types of queries: " x" — add integer …

详解自动驾驶仿真框架OpenCDA: An Open Cooperative Driving Automation Framework Integrated with Co-Simulation

本文介绍一款同时支持协同驾驶开发与测试、自动驾驶全栈开发 和 CARLA-SUMO联合仿真的开源框架 OpenCDA&#xff0c;论文已收录于 ITSC 2021。主要feature有&#xff1a; 支持CARLA-SUMO联合仿真&#xff0c;CARLA端主管环境渲染、传感器模拟、车辆动力&#xff0c;Sumo端主管…

JavaMonitor 监视器

为什么wait(), notify()和notifyAll()必须在同步方法或者同步块中被调用&#xff1f; 当一个线程需要调用对象的wait()方法的时候&#xff0c;这个线程必须拥有该对象的锁&#xff0c;接着它就会释放这个对象锁并进入等待状态直到其他线程调用这个对象上的notify()方法。同样的…

KITTI自动驾驶数据集可视化教程

本文介绍关于自动驾驶数据集KITTI的基本操作&#xff0c;包括Camera和LiDAR可视化教程&#xff0c;源码已上传&#xff1a;https://download.csdn.net/download/cg129054036/20907604 1. 数据准备 将 KITTI 数据 (calib, image_2, label_2, velodyne) 添加到 dataset/KITTI/ob…

重读经典《Quaternion kinematics for the error-state Kalman filter》

本文将介绍一篇关于 四元数运动学的误差卡尔曼滤波 经典论文。本文结构如下&#xff1a; 第1章四元数定义和性质介绍&#xff0c;包括&#xff1a;加法、减法、乘法&#xff08;矩阵表示&#xff09;、模、幂数、指数运算等。第2章旋转群定义和性质介绍&#xff0c;包括&#…

【CodeForces - 789C】Functions again(最大子段和变形,dp,思维)

题干&#xff1a; Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are wo…

一步步编写操作系统 55 CPL和DPL入门2

接上节。 图中第132行的jmp指令&#xff0c;段选择子为SELECTOR_CODE&#xff0c;其RPL的值为RPL0&#xff0c;RPL0定义在include/boot.inc中&#xff0c;其值为0。选择子的索引部分值为1&#xff0c;表示对应GDT中第1个段描述符&#xff0c;该描述符的DPL为0&#xff0c;&…

详解停车位检测算法 Vision-Based Parking-Slot Detection: A DCNN-Based Approach and a Large-Scale Benchmark

本文介绍一篇基于深度学习的停车位检测论文&#xff1a;DeepPS&#xff0c;作者同时公开了数据集ps2.0&#xff0c;工作很扎实&#xff0c;对于入门停车位检测很有帮助&#xff0c;论文发表在 IEEE T-IP 2018。 项目链接为&#xff1a;https://cslinzhang.github.io/deepps/ 0…

Monitor(管程)是什么意思?Java中Monitor(管程)的介绍

本篇文章给大家带来的内容是关于Monitor&#xff08;管程&#xff09;是什么意思&#xff1f;Java中Monitor&#xff08;管程&#xff09;的介绍&#xff0c;有一定的参考价值&#xff0c;有需要的朋友可以参考一下&#xff0c;希望对你有所帮助。 monitor的概念 管程&#x…

详解经典GPS辅助惯性导航论文 A GPS-aided Inertial Navigation System in Direct Configuration

本文介绍一篇 IMU 和 GPS 融合的惯性导航论文&#xff0c;重点是理解本文提出的&#xff1a;Dynamical constraints update、Roll and pitch updates 和 Position and heading updates。 论文链接为&#xff1a;https://www.sciencedirect.com/science/article/pii/S166564231…