本文汇总了在使用LaTeX
中常用的数学符号,相关下载资源为:139分钟学会Latex(免积分下载)。
文章目录
- 1. 希腊字母
- 2. 集合运算符
- 3. 数学运算符
- 4. 三角符号、指数符号、对数符号
- 5. 积分、微分、偏微分
- 6. 矩阵和行列式
- 7. 基本函数、分段函数
- 8. 其它符号
1. 希腊字母
在LaTeX
中,即使只是单个数学符号或数字,也要使用’$$'表示,例如数字777应写成 $ 7 $,大写希腊字母只需要首字母大写即可。
希腊字母 | LaTeX语法 | 希腊字母 | LaTeX语法 |
---|---|---|---|
α\alphaα | \alpha | ξ\xiξ, Ξ\XiΞ | \xi, \Xi |
β\betaβ | \beta | ooo | o |
γ\gammaγ, Γ\GammaΓ | \gamma, \Gamma | π\piπ, Π\PiΠ | \pi, \Pi |
δ\deltaδ, Δ\DeltaΔ | \delta, \Delta | ϖ\varpiϖ | \varpi |
ϵ\epsilonϵ | \epsilon | ρ\rhoρ | \rho |
ε\varepsilonε | \varepsilon | ϱ\varrhoϱ | \varrho |
ζ\zetaζ | \zeta | σ\sigmaσ, Σ\SigmaΣ | \sigma, \Sigma |
η\etaη | \eta | ς\varsigmaς | \varsigma |
θ\thetaθ, Θ\ThetaΘ | \theta, \Theta | τ\tauτ | \tau |
ϑ\varthetaϑ | \vartheta | υ\upsilonυ, Υ\UpsilonΥ | \upsilon, \Upsilon |
ι\iotaι | \iota | ϕ\phiϕ, Φ\PhiΦ | \phi, \Phi |
κ\kappaκ | \kappa | φ\varphiφ | \varphi |
λ\lambdaλ, Λ\LambdaΛ | \lambda, \Lambda | χ\chiχ | \chi |
μ\muμ | \mu | ψ\psiψ, Ψ\PsiΨ | \psi, \Psi |
ν\nuν | \nu | ω\omegaω, Ω\OmegaΩ | \omega, \Omega |
2. 集合运算符
集合符号 | LaTeX语法 | 集合符号 | LaTeX语法 |
---|---|---|---|
∪\cup∪ | \cup | ∩\cap∩ | \cap |
⊂\subset⊂, ⊄\not\subset⊂ | \subset , \not\subset | ⊆\subseteq⊆ | \subseteq |
⊃\supset⊃ | \supset | ⊇\supseteq⊇ | \supseteq |
∈\in∈ | \in | ∉\notin∈/ | \notin |
R\mathbb{R}R | \mathbb{R} | Z\mathbb{Z}Z | \mathbb{Z} |
Q\mathbb{Q}Q | \mathbb{Q} | N\mathbb{N}N | \mathbb{N} |
C\mathbb{C}C | \mathbb{C} | ∅\varnothing∅ | \varnothing |
∅\emptyset∅ | \emptyset | ℵ\alephℵ | \aleph |
∀\forall∀ | \forall | ∃\exists∃ | \exists |
¬\neg¬ | \neg | ∨\vee∨ | \vee |
∧\wedge∧ | \wedge | ⊢\vdash⊢ | \vdash |
⊨\models⊨ | \models | ∖\setminus∖ | \setminus |
AcA^{\mathsf{c}}Ac | A^{\mathsf{c}} | A‾\overline{A}A | \overline{A} |
3. 数学运算符
运算符号 | LaTeX语法 | 运算符号 | LaTeX语法 | 运算符号 | LaTeX语法 |
---|---|---|---|---|---|
<<< | < | ∠\angle∠ | \angle | ⋅\cdot⋅ | \cdot |
≤\leq≤ | \leq | ∡\measuredangle∡ | \measuredangle | ±\pm± | \pm |
>>> | > | ℓ\ellℓ | \ell | ∓\mp∓ | \mp |
≥\geq≥ | \geq | ∥\parallel∥ | \parallel | ×\times× | \times |
≠\neq= | \neq | 45∘45^{\circ}45∘ | 45^{\circ} | ÷\div÷ | \div |
≪\ll≪ | ll | ≅\cong≅ | \cong | ∗\ast∗ | \ast |
≫\gg≫ | \gg | ≆\ncong≆ | \ncong | ∣\mid∣ | \mid |
≈\approx≈ | \approx | ∼\sim∼ | \sim | ∤\nmid∤ | \nmid |
≍\asymp≍ | \asymp | ≃\simeq≃ | \simeq | n!n!n! | n! |
≡\equiv≡ | \equiv | ≁\nsim≁ | \nsim | ∂\partial∂ | \partial |
≺\prec≺ | \prec | ⊕\oplus⊕ | \oplus | ∇\nabla∇ | \nabla |
⪯\preceq⪯ | \preceq | ⊖\ominus⊖ | \ominus | ℏ\hbarℏ | \hbar |
≻\succ≻ | \succ | ⊙\odot⊙ | \odot | ∘\circ∘ | \circ |
⪰\succeq⪰ | \succeq | ⊗\otimes⊗ | \otimes | ⋆\star⋆ | \star |
∝\propto∝ | \propto | ⊘\oslash⊘ | \oslash | √\surd√ | \surd |
≐\doteq≐ | \doteq | ↾\upharpoonright↾ | \upharpoonright | ✓\checkmark✓ | \checkmark |
4. 三角符号、指数符号、对数符号
运算符号 | LaTeX语法 | 运算符号 | LaTeX语法 | 运算符号 | LaTeX语法 |
---|---|---|---|---|---|
sin\sinsin | \sin | sinh\sinhsinh | \sinh | arcsin\arcsinarcsin | \arcsin |
cos\coscos | \cos | cosh\coshcosh | \cosh | arccos\arccosarccos | \arccos |
tan\tantan | \tan | tanh\tanhtanh | \tanh | arctan\arctanarctan | \arctan |
sec\secsec | \sec | coth\cothcoth | \coth | min\minmin | \min |
csc\csccsc | \csc | det\detdet | \det | max\maxmax | \max |
cot\cotcot | \cot | dim\dimdim | \dim | inf\infinf | \inf |
exp\expexp | \exp | ker\kerker | \ker | sup\supsup | \sup |
log\loglog | \log | deg\degdeg | \deg | lim inf\liminfliminf | \liminf |
ln\lnln | \ln | arg\argarg | \arg | lim sup\limsuplimsup | \limsup |
lg\lglg | \lg | gcd\gcdgcd | \gcd | lim\limlim | \lim |
5. 积分、微分、偏微分
一重积分:
$$
\int_{x=0}^3 x^2\ = 9
$$
∫x=03x2=9\int_{x=0}^3 x^2\ =9 ∫x=03x2 =9
二重积分:
$$
\iint dxdy = S
$$
∬dxdy=S\iint dxdy = S ∬dxdy=S
三重积分:
$$
\iiint dxdydz = V
$$
∭dxdydz=V\iiint dxdydz = V ∭dxdydz=V
一阶微分方程:
$$
\frac{dy}{dx}+P(x)y = Q(x)
\\ \left. \frac{{\rm d}y}{{\rm d}x} \right|_{x=0} = 3x+1
$$
dydx+P(x)y=Q(x)dydx∣x=0=3x+1\frac{dy}{dx}+P(x)y = Q(x) \\ \left. \frac{{\rm d}y}{{\rm d}x} \right|_{x=0} = 3x+1 dxdy+P(x)y=Q(x)dxdy∣∣∣∣x=0=3x+1
二阶微分方程:
$$
y''+py'+qy=f(x)
\\\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=f(x)
$$
y′′+py′+qy=f(x)d2ydx2+pdydx+qy=f(x)y''+py'+qy=f(x) \\\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=f(x) y′′+py′+qy=f(x)dx2d2y+pdxdy+qy=f(x)
偏微分方程:
$$
\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right)
$$
∂u∂t=h2(∂2u∂x2+∂2u∂y2+∂2u∂z2)\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right) ∂t∂u=h2(∂x2∂2u+∂y2∂2u+∂z2∂2u)
6. 矩阵和行列式
单位矩阵:
$$
\begin{bmatrix}
1&0&0 \\
0&1&0 \\
0&0&1 \\
\end{bmatrix}
$$
[100010001]\begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \\ \end{bmatrix} ⎣⎡100010001⎦⎤
m×nm \times nm×n矩阵:
$$
A=\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{bmatrix}$$
$$
A=[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn]A=\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\ {\vdots}&{\vdots}&{\ddots}&{\vdots} \\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\ \end{bmatrix} A=⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎦⎥⎥⎥⎤
行列式:
$$
D=\begin{vmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{vmatrix}
$$
D=∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn∣D=\begin{vmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\ {\vdots}&{\vdots}&{\ddots}&{\vdots} \\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\ \end{vmatrix} D=∣∣∣∣∣∣∣∣∣a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn∣∣∣∣∣∣∣∣∣
7. 基本函数、分段函数
基本函数:
$$
f(n)=\sum_{i=1}^{n}{n*(n+1)}
$$
f(n)=∑i=1nn∗(n+1)f(n)=\sum_{i=1}^{n}{n*(n+1)} f(n)=i=1∑nn∗(n+1)
$$
x^{y}=(1+{\rm e}^x)^{-2xy}
$$
xy=(1+ex)−2xyx^{y}=(1+{\rm e}^x)^{-2xy} xy=(1+ex)−2xy
$$
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.
$$
Γ(z)=∫0∞tz−1e−tdt.\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
$$
y(x)=x^3+2x^2+x+1
$$
y(x)=x3+2x2+x+1y(x)=x^3+2x^2+x+1 y(x)=x3+2x2+x+1
分段函数:
$$
f_n =\begin {cases}
a &\text {if $n=0$} \\
r \cdot f_{n -1} &\text {else}
\end{cases}
$$
fn={aif n=0r⋅fn−1elsef_n =\begin {cases} a &\text {if $n=0$} \\ r \cdot f_{n -1} &\text {else} \end{cases} fn={ar⋅fn−1if n=0else
齐次方程:
$$
\left \{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
{a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3\left \{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. ⎩⎨⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
8. 其它符号
数学符号 | LaTeX语法 | 数学符号 | LaTeX语法 | 数学符号 | LaTeX语法 |
---|---|---|---|---|---|
2\sqrt{2}2 | \sqrt{2} | 3n\sqrt[n]{3}n3 | \sqrt[n]{3} | f′f'f′ | f’ |
f′′f''f′′ | f’’ | Σ∗\Sigma^{*}Σ∗ | \Sigma^{*} | a˙\dot{a}a˙ | \dot{a} |
a¨\ddot{a}a¨ | \ddot{a} | x^\hat{x}x^ | \hat{x} | x~\tilde{x}x~ | \tilde{x} |
xˉ\bar{x}xˉ | \bar{x} | x⃗\vec{x}x | \vec{x} | ∞\infty∞ | \infty |
→\rightarrow→ | \rightarrow | ↦\mapsto↦ | \mapsto | ↛\nrightarrow↛ | \nrightarrow |
⟼\longmapsto⟼ | \longmapsto | ⟶\longrightarrow⟶ | \longrightarrow | ←\leftarrow← | \leftarrow |
⇒\Rightarrow⇒ | \Rightarrow | ↔\leftrightarrow↔ | \leftrightarrow | ↓\downarrow↓ | \downarrow |
↑\uparrow↑ | \uparrow | ↕\updownarrow↕ | \updownarrow | 23\frac{2}{3}32 | \frac{2}{3} |