SharePoint 站点结构及概念

简单的记录一下Sharepoint的结构与基本概念

一、服务器场

服务器场,即主机的集群.简单点说就是两台机器互相备份,两个或几台机器之间有心跳线,定时检测对端设备的情况,如果对端设备出现故障,一台机器就会接管出问题机器的受保护的资源如数据库等


首先,所有Sharepoint站点位于服务器场中,这个服务器场相当于一组服务器的集合,用来共同完成支撑Sharepoint应用的任务,当然也可以将场中所有服务器的角色安装到同一台物理服务器上。基本服务器场中的各个角色类似于以下的结构,

场中每种服务器角色均可以由一组服务器组成,以实现负载平衡或冗余。在sharepoint安装的时候可以选择单独安装所有角色或是服务器场。安装过后可以选择新建服务器场或是加入现有场。服务器场的配置应该存放在配置数据库中。

二、Web应用程序

相当于IIS站点中的虚拟服务器,建立新的web应用程序后,可以在web服务器端IIS控制台上看到该新建的应用。Web应用程序用来支撑网站的运行,在实际规划中可以根据不同的目的来增加新的应用程序,如负责公司Portal的应用、负责公司流程的应用等等。一个web应用程序可以支撑多个网站集,该应用程序只有一个webconfig配置,共享同一个端口。

三、网站集

用来归类不同的站点,也叫站点集。网站集存放在内容数据库中,一个网址集只能存放在同一个数据库,但一个数据库可以存放多个网站集。每个网站集可以多个不同的子站点。引进网站集概念的目的主要是权限的分隔和备份的需要。用户的权限以网站集进行分隔,用户在不同网站集的权限完全独立。备份也是以网站集为基本单位。

四、站点

站点时真正呈现给用户的内容展示,必须位于某个站点集中。web应用程序、网站集、站点的结构示意图如下,


五、站点内容

站点的内容由列表组成,当然也有文档库,其实文档库只是特殊的一种列表而已。列表是存放数据的基本结构,相当于数据库中的表。既然列表相当于表,那自然就要有数据列,数据列在sharepoint中叫做栏,可以定义栏的数据类型以及校验方法。另外为了方便列表的重复利用,Sharepoint还有一个内容类型的概念,它类似于表的模板,可以由表自由引用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439393.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python学习】 - sklearn学习 - 自带数据集sklearn.datasets.x

sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_计算机生成的数据集(Generated Datas…

sharepoint 概念及认证方式介绍

3.SharePoint Web 应用程序 我个人的理解,SharePoint Web 应用程序(SharePoint Web Application)代表的是 SharePoint 网站(集)的物理容器。 SharePoint Web 应用程序需要指定内容数据库、宿主 IIS 应用程序池、应用…

我们可以用SharePoint做什么

前言 不知不觉作为一个SharePoint的开发人员若干年了,从SharePoint api 开始学习,到了解SharePoint的结构,逐渐一点点了解sharepoint的体系;从SharePoint 的2007到2010到2013到SharePoint Online都接触了一些。本文会从个人的视角…

SharePoint REST API - 确定REST端点URL

SharePoint REST端点URI的结构 在你能够通过REST访问SharePoint资源之前,首先你要做的就是找出对应的URI端点,如果你对Client API熟悉,有些时候也可以参考Client API去猜测构建,例如。 客户端对象模型的方法: List.G…

【机器学习】 - 各种人脸数据集下载地址及说明汇总

1. Olivetti Faces人脸数据集 由40个人组成,共计400张人脸; 每人的人脸图片为10张,包含正脸、侧脸以及不同的表情; 整个数据集就是一张大的人脸组合图片,下载地址:https://cs.nyu.edu/~roweis/data/olivet…

【机器学习】 - 激活函数与交叉熵Sigmoid, Softmax, binary_crossentropy, categorican_crossentropy区别

Content: 为什么需要激活函数;一个神经元在做什么;激活函数 SigmoidSoftmax 4. 交叉熵损失函数 Binary cross-entropyCategorican cross-entropy为什么需要激活函数: Ans: 为了引入非线性变换。 如下图所示的红线和蓝线,在这个…

SharePoint 2013 Farm 安装指南——Least Privilege

写过很多关于SharePoint 2013 安装,这是第四篇。可能你会觉得为什么如此简单的安装至于花那么多精力去折腾吗。我的答案是肯定的。知识的积累不是一蹴而就的,而是循序渐进的去学习,每一个阶段都有独立的思考,于是乎第四篇SharePoi…

【机器学习】 - 关于Keras的深入理解

1.keras中使用相同的loss与metrics,都指定为mse,为什么训练时每轮完成后它们数值不一样? 答: 此时的loss是指完成最后一个batch后得到的这轮epoch的loss的加权平均,权重就是每个batch的样本数,&#xff08…

SharePoint 2007 and 2010 的服务器场的端口

由于要把一台SharePoint Server放到外网去,就把IP改到DMZ区了,结果除了系统管理员,其他帐号都无法验证通过,肯定是一些端口没开. 网上一查,SharePoint所需要的端口还真多,不过Client和WFE之间的应该开放80和443就OK了,其余的都是SharePoint Server之间,或者和 公司网络环境的…

【Python学习】 - 使用Anaconda的Spyder查看某些函数的原型的6种方法汇总

1.Ctrl鼠标点击函数名(对应的函数名会加下划线) 或 Ctrlg 2.help(function) 在某些情况下方法1失效,比如TensorFlow中的一些函数tf.constant,他只会跳转到一个init文件,并不会展示函数原型。 所以可以这样help(tf.co…

关于报错:'nvidia-smi' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

使用cmd查看电脑显卡的信息,调用nvidia-smi查看显卡使用情况报错如下: 因为它找不到该命令。这个文件是一个exe文件,一般都在下面这个文件夹中。 C:\Program Files\NVIDIA Corporation\NVSMI 所以想要使用该命令必须要能得到这个文件夹&…

SharePoint网站集备份与恢复

下面是操作过程&#xff1a;尝试三是成功的 尝试一&#xff1a;移动网站集&#xff08;无效&#xff09; 向Web应用程序新增了一个数据库&#xff0c;把网站集迁移到新数据库里&#xff1b; Get-SPSite -ContentDatabase <SourceContentDb> | Move-SPSite -Destination…

【机器学习】 - 使用dlib进行人脸定位,人脸检测,给人脸图片戴口罩

detector dlib.get_frontal_face_detector() 功能&#xff1a;人脸检测画框 参数&#xff1a;无 返回值&#xff1a;默认的人脸检测器 faces detector(img_gray, 0) 功能&#xff1a;对图像画人脸框 参数&#xff1a;img_gray&#xff1a;输入的图片 返回值&#xff1a;人脸…

【机器学习】 - import cv2 opencv安装python

果然不出我所料&#xff0c;直接pip就出了很多奇奇怪怪的错误&#xff0c;还是用清华镜像吧 输入&#xff1a;pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple 安装完后&#xff0c;重启spyder即可使用。 下载方法2&#xff1a; 下载地址&#xff1a…

Sharepoin学习笔记—架构系列—Sharepoint服务(Services)与服务应用程序框架(Service Application Framework) 2

上一篇我们以问答的方式明确了Sharepoint服务的一些概念&#xff0c;这里我们重点来看两个方面:Sharepoint服务器构架对象模型以及Sharepoint 服务应用程序的某些拓扑结构 一、Sharepoint服务器构架对象模型 二、Sharepoint 服务应用程序的某些拓扑结构 Sharepoint 服务应用程…

【深度学习】 - MobileNet使用的可分离卷积

任何看过MobileNet架构的人都会遇到可分离卷积&#xff08;separable convolutions&#xff09;这个概念。但什么是“可分离卷积”&#xff0c;它与标准的卷积又有什么区别&#xff1f;可分离卷积主要有两种类型&#xff1a; 空间可分离卷积&#xff08;spatial separable con…

SharePoint 2010 WSP包部署过程中究竟发生什么?

在SharePoint 2010中&#xff0c;我们可以使用Visual Studio 2010轻松创建WSP包来安装Web Part&#xff0c; Event Handler&#xff0c; Application Page以及其他。非常方便&#xff0c;但是你有没有研究过在在整个过程中SharePoint究竟做了些什么&#xff1f;以下是我根据htt…

【机器学习】 - 目标检测 - VOC格式数据集介绍与自己制作

一、VOC数据集 PASCAL VOC 挑战赛主要有 Object Classification 、Object Detection、Object Segmentation、Human Layout、Action Classification 这几类子任务。每年都有新的数据集供参赛者进行训练。公布了2007和2012两年的数据集&#xff0c;分别称之为VOC2007和VOC2012&am…

【Python学习】win10+Anaconda3环境,安装phthon第三方库Jieba

一、介绍 jieba库是一款优秀的 Python 第三方中文分词库&#xff0c;jieba 支持三种分词模式&#xff1a;精确模式、全模式和搜索引擎模式&#xff0c;下面是三种模式的特点。 精确模式&#xff1a;试图将语句最精确的切分&#xff0c;不存在冗余数据&#xff0c;适合做文本分…

【PAT甲级最新题解】PAT甲级2020.7月春季考试满分题解(附代码)

写在前面&#xff1a;这次题目虽然大多数是模拟题且不算难&#xff0c;但是题面其实不算友好&#xff0c;不少同学因为题目描述而错失满分。 A&#xff1a; 题意&#xff1a;给定一个数字串&#xff0c;问每一个前缀串是否是素数。 模拟题不多解释。 #include<cstdio>…