【C++】AVL树(平衡二叉树)

目录

  • 一、AVL树的定义
  • 二、AVL树的作用
  • 三、AVL树的插入操作
    • 插入——平衡因子的更新
    • 插入——左单旋
    • 插入——右单旋
    • 插入——左右双旋
    • 插入——右左双旋
  • 四、ALVL树的验证
  • 五、AVL树的性能

一、AVL树的定义

AVL树,全称 平衡二叉搜索(排序)树

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

平衡因子(Balance Factor,简写为bf)
平衡因子(bf):结点的左子树的深度减去右子树的深度。也可以是右子树的深度减去左子树的深度。看个人实现而异。

即: 结点的平衡因子 = 左子树的高度 - 右子树的高度。
或者 节点的平衡因子 = 右子树的高度 - 左子树的高度。

AVL树本质上是一颗二叉查找树,但是它又具有以下特点:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

这就是一颗AVL树
在这里插入图片描述

二、AVL树的作用

有一颗二叉树,他有n个节点,如果他是一颗二叉搜索树,他形状多样,可能会形成单枝树,高度为n,那么在这颗搜索树中查找元素的最坏时间复杂度为O(n),最好时间复杂度是O( l o g 2 n log_2 n log2n)。
如果他是一颗AVL树,他的高度稳定为 l o g 2 n log_2 n log2n,查找元素的时间复杂度为O( l o g 2 n log_2 n log2n)。在这里插入图片描述
由上图可知,同样的结点,由于插入方式不同导致树的高度也有所不同。特别是在带插入结点个数很多且正序的情况下,会导致二叉树的高度是O(N),而AVL树就不会出现这种情况,树的高度始终是O(lgN).高度越小,对树的一些基本操作的时间复杂度就会越小。这也就是我们引入AVL树的原因。

三、AVL树的插入操作

插入——平衡因子的更新

在插入一个元素的时候,必然会引起平衡因子的变化,所以我们需要在插入的时候把平衡因子同时更新,在平衡因子大于1或者小于-1时,我们则需要进行旋转操作,进行调整,使平衡因子再次正常,从而保证这颗二叉树一直是一颗AVL树。

使用平衡因子计算: 右子树高度 - 左子树高度

情况一:
在这里插入图片描述
在插入元素后,需要更新父节点的平衡因子,在父节点的左子树插入元素,父节点的平衡因子-1,在父节点的左子树插入元素,父节点的平衡因子+1,如果父节点的平衡因子更新过后变为1或者-1,则需继续往上更新至根节点,因为1或者-1表示该节点的高度发生改变,需往上更新。

情况2:
在这里插入图片描述
在插入元素后,需要更新父节点的平衡因子,在父节点的左子树插入元素,父节点的平衡因子-1,在父节点的左子树插入元素,父节点的平衡因子+1,如果父节点的平衡因子更新过后变为0,则不需要继续向上更新,因为变为0只能说明该树高度没有变化,只是相对于原来变得平衡。

如果在更新平衡因子后,平衡因子不在(-1/0/1)范围时,则需旋转操作,下面讲解如何进行旋转操作

由于插入需要旋转的情况较多,大致可以分为四大类

插入——左单旋

动图演示
请添加图片描述

情况一
右子树高时,在右子树的右侧插入元素,此时需要左单旋这里是引用

插入——右单旋

动图演示
请添加图片描述

情况二、
左子树较高时,在左子树的左侧插入元素,此时需要右单旋这里是引用

插入——左右双旋

情况三、左子树较高时,在左子树的右侧插入元素,此时需要左右双旋,即:先对30进行左单旋,然后再对90进行右单旋这里是引用

插入——右左双旋

情况四、右子树较高时,在右子树的左侧插入元素,此时需要右左双旋,即:先对90进行右单旋,然后再对30进行左单旋
在这里插入图片描述

四、ALVL树的验证

int _Height(Node* root)
{//用来计算二叉树的高度if (root == NULL)return 0;int leftH = _Height(root->_left);int rightH = _Height(root->_right);return leftH > rightH ? leftH + 1 : rightH + 1;
}bool _IsBalance(Node* root)
{if (root == NULL)return true;int leftH = _Height(root->_left);int rightH = _Height(root->_right);//检查平衡因子if (rightH - leftH != root->_bf){cout << root->_kv.first << "节点平衡因子异常" << endl;return false;}//通过计算左右子树的高度差判断这颗二叉树是否为AVL树return abs(leftH - rightH) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);//检查高度差要检查二叉树中所有节点的左右子树的高度差
}bool IsBalance()
{return _IsBalance(_root);
}

五、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 n log_2 n log2n

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HCIP的交换机实验

题目 拓扑图 PC1/3接口用access 创建WLAN LSW1 创建WLAN [lsw1]vlan batch 2 to 6[lsw1-Ethernet0/0/1]p [lsw1-Ethernet0/0/1]port l [lsw1-Ethernet0/0/1]port link- [lsw1-Ethernet0/0/1]port link-flap [lsw1-Ethernet0/0/1]port link-type acc [lsw1-Ethernet0/0…

Bigemap Pro国产基础软件介绍——一款多源数据处理软件

一、软件简介 Bigemap Pro是由成都比格图数据处理有限公司(下称”BIGEMAP”)开发和发行的国产大数据处理基础软件。Bigemap Pro是在BIGEMAP GIS Office基础上&#xff0c;经过十年的用户积累与反馈和技术更新迭代出的新一代基础软件产品。Bigemap Pro国产基础软件集成了数据采…

【Diffusion】李宏毅2023机器学习Diffusion笔记

文章目录 1 想法概述2 实际过程阶段1 Add Noise阶段2 Denoise 3 数学原理4 为什么推理时要额外加入noise5 一些不知道对不对的Summary 1 想法概述 从一张充满噪声的图中不断denoise&#xff0c;最终得到一张clear的图片。为了确定当前图片中噪声占比的大小&#xff0c;同时输入…

LVS负载均衡之--Keepalived模式(超详细)

一.Keepalived概述 Keepalived起初是专门针对LVS设计的一款强大的辅助工具&#xff0c;主要用来提供故障切换和健康检查功能-----判断LVS负载调度器&#xff0c;节点服务器的可用性&#xff0c;及时隔离并替换为新的服务器&#xff0c;当故障主机恢复后将其重新加入群集中Keep…

【数据结构】二叉树

&#x1f407; &#x1f525;博客主页&#xff1a; 云曦 &#x1f4cb;系列专栏&#xff1a;数据结构 &#x1f4a8;吾生也有涯&#xff0c;而知也无涯 &#x1f49b; 感谢大家&#x1f44d;点赞 &#x1f60b;关注&#x1f4dd;评论 文章目录 前言一、树的概念及结构&#x…

【5G 核心网】5G 多PDU会话锚点技术介绍

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…

Spring Boot(六十四):SpringBoot集成Gzip压缩数据

1 实现思路 2 实现 2.1 创建springboot项目 2.2 编写一个接口,功能很简单就是传入一个Json对象并返回 package com.example.demo.controller;import com.example.demo.entity.Advertising; import lombok.Data; import lombok.extern.slf4j.Slf4j; import org.springframewo…

网络通信原理传输层TCP三次建立连接(第四十八课)

ACK :确认号 。 是期望收到对方的下一个报文段的数据的第1个字节的序号,即上次已成功接收到的数据字节序号加1。只有ACK标识为1,此字段有效。确认号X+1SEQ:序号字段。 TCP链接中传输的数据流中每个字节都编上一个序号。序号字段的值指的是本报文段所发送的数据的第一个字节的…

「UG/NX」Block UI 面收集器FaceCollector

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#

LangChain手记 Question Answer 问答系统

整理并翻译自DeepLearning.AILangChain的官方课程&#xff1a;Question Answer&#xff08;源代码可见&#xff09; 本节介绍使用LangChian构建文档上的问答系统&#xff0c;可以实现给定一个PDF文档&#xff0c;询问关于文档上出现过的某个信息点&#xff0c;LLM可以给出关于该…

【vue】项目基础环境搭建、css样式重置与公用

nodejs环境 nodejs是当下前端工程化开发必不可少的环境, 使用 nodejs的 npm功能来管理依赖包 查看node 和 npm的版本 node -v #查看node版本npm -v #查看npm版本 git版本控制 git版本控制工具是目前最为流行的分布式版本管理工具,代码的**提交, 检出, 日志**, 都需要通过git完…

Matplotlib数据可视化(二)

目录 1.rc参数设置 1.1 lines.linestype取值 1.2 lines.marker参数的取值 1.3 绘图中文预设 1.4 示例 1.4.1 示例1 1.4.2 示例2 1.rc参数设置 利用matplotlib绘图时为了让绘制出的图形更加好看&#xff0c;需要对参数进行设置rc参数设置。可以通过以下代码查看matplotli…

[Machine Learning] decision tree 决策树

&#xff08;为了节约时间&#xff0c;后面关于机器学习和有关内容哦就是用中文进行书写了&#xff0c;如果有需要的话&#xff0c;我在目前手头项目交工以后&#xff0c;用英文重写一遍&#xff09; &#xff08;祝&#xff0c;本文同时用于比赛学习笔记和机器学习基础课程&a…

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …

Springboot MultipartFile文件上传与下载

yml文件配置是否可以上传及上传附件大小 servlet:multipart:# 允许文件上传enabled: true# 单个文件大小max-file-size: 20MB# 设置总上传的文件大小max-request-size: 50MB /*** param files* param request* Description 上传文件* Throws* Return java.util.List* Date 202…

动手学深度学习—卷积神经网络LeNet(代码详解)

1. LeNet LeNet由两个部分组成&#xff1a; 卷积编码器&#xff1a;由两个卷积层组成&#xff1b;全连接层密集块&#xff1a;由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层&#xff1b;每个卷积层使用55卷积核和一个sigmoid激…

LeetCode--HOT100题(35)

目录 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09;题目接口解题思路1代码解题思路2代码 PS: 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09; 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合…

UDP 的报文结构以及注意事项

UDP协议 1.UDP协议端格式 1.图中的16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度 2.若校验和出错,会直接丢弃 2.UDP的报文结构 UDP报文主体分为两个部分:UDP报头(占8个字节)UDP载荷/UDP数据 1.源端口号 16位,2个字节 2.目的端口号 16位,2个字节 3.包长度 指示了…

sd-webui安装comfyui扩展

文章目录 导读ComfyUI 环境安装1. 安装相关组件2. 启动sd-webui3. 访问sd-webui 错误信息以及解决办法 导读 这篇文章主要给大家介绍如何在sd-webui中来安装ComfyUI插件 ComfyUI ComfyUI是一个基于节点流程式的stable diffusion的绘图工具&#xff0c;它集成了stable diffus…

什么是闭包(closure)?为什么它在JavaScript中很有用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 闭包&#xff08;Closure&#xff09;是什么&#xff1f;⭐ 闭包的用处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…