SpringCloud实用篇7——深入elasticsearch

目录

  • 1 数据聚合
    • 1.1 聚合的种类
    • 1.2 DSL实现聚合
      • 1.2.1 Bucket聚合语法
      • 1.2.2 聚合结果排序
      • 1.2.3 限定聚合范围
      • 1.2.4 Metric聚合语法
      • 1.2.5.小结
    • 1.3 RestAPI实现聚合
      • 1.3.1 API语法
      • 1.3.2 业务需求
      • 1.3.3 业务实现
  • 2 自动补全
    • 2.1 拼音分词器
    • 2.2 自定义分词器
    • 2.3 自动补全查询
    • 2.4 实现酒店搜索框自动补全
      • 2.4.1 修改酒店映射结构
      • 2.4.2 修改HotelDoc实体类
      • 2.4.3 重新导入
      • 2.4.4 自动补全查询的JavaAPI
      • 2.4.5 实现搜索框自动补全
  • 3 数据同步
    • 3.1 思路分析
      • 3.1.1 同步调用
      • 3.1.2 异步通知
      • 3.1.3 监听binlog
      • 3.1.4 三种方式的优缺点
    • 3.2 实现数据同步
      • 3.2.1 思路
      • 3.2.2 导入demo
      • 3.2.3 声明交换机、队列
      • 3.2.4 发送MQ消息
      • 3.2.5 接收MQ消息
      • 3.2.5 启动并测试数据同步功能
  • 4.集群
    • 4.1 搭建ES集群
      • 4.1.1 创建es集群
      • 4.1.2 集群状态监控
      • 4.1.3 创建索引库
      • 4.1.4 查看分片效果
    • 4.2 集群脑裂问题
      • 4.2.1 集群职责划分
      • 4.2.2.脑裂问题
      • 4.2.3 小结
    • 4.3 集群分布式存储
      • 4.3.1 分片存储测试
      • 4.3.2 分片存储原理
    • 4.4 集群分布式查询
    • 4.5.集群故障转移

1 数据聚合

聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1 聚合的种类

聚合常见的有三类:

  • 桶(Bucket) 聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric) 聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline) 聚合:其它聚合的结果为基础做聚合

注意: 参加聚合的字段必须是keyword、日期、数值、布尔类型,绝对不能是text类型

在这里插入图片描述

1.2 DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1 Bucket聚合语法

语法如下:

GET /hotel/_search
{"size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brand", // 参与聚合的字段"size": 20 // 希望获取的聚合结果数量}}}
}

结果如图:

在这里插入图片描述

1.2.2 聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为 _count ,并且按照_count降序排序。

一般情况下我们使用默认的降序排序就可以了,但是我们可以指定order属性,自定义聚合的排序方式

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","order": {"_count": "asc" // 按照_count升序排列},"size": 20}}}
}

1.2.3 限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{"query": {"range": {"price": {"lte": 200 // 只对200元以下的文档聚合}}}, "size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","size": 20}}}
}

这次,聚合得到的品牌明显变少了:

在这里插入图片描述

1.2.4 Metric聚合语法

我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": { "terms": { "field": "brand", "size": 20},"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算"score_stats": { // 聚合名称"stats": { // 聚合类型,这里stats可以计算min、max、avg等"field": "score" // 聚合字段,这里是score}}}}}
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

在这里插入图片描述

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3 RestAPI实现聚合

1.3.1 API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

在这里插入图片描述

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

在这里插入图片描述

代码:

@Test
void testAgg() throws IOException {// 1.准备请求SearchRequest request = new SearchRequest("hotel");// 2.请求参数// 2.1.sizerequest.source().size(0);// 2.2.聚合request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(20));// 3.发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Aggregations aggregations = response.getAggregations();// 4.1.根据聚合名称,获取聚合结果Terms brandAgg = aggregations.get("brandAgg");// 4.2.获取bucketsList<? extends Terms.Bucket> buckets = brandAgg.getBuckets();// 4.3.遍历for (Terms.Bucket bucket : buckets) {String brandName = bucket.getKeyAsString();System.out.println("brandName = " + brandName);long docCount = bucket.getDocCount();System.out.println("docCount = " + docCount);}
}

注意:response.getAggregations().get(“brandAgg”)的返回结果要是Terms,注意包别导错了,导es的包。

1.3.2 业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的

在这里插入图片描述

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

在这里插入图片描述

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

在这里插入图片描述

结果是一个Map结构

key是字符串,城市、星级、品牌、价格

value是集合,例如多个城市的名称

1.3.3 业务实现

在cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

请求方式:POST

请求路径:/hotel/filters

请求参数:RequestParams,与搜索文档的参数一致

返回值类型:Map<String, List<String>>

代码:

@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){return hotelService.getFilters(params);
}

这里调用了IHotelService中的getFilters方法,尚未实现。

在cn.itcast.hotel.service.IHotelService中定义新方法:

Map<String, List<String>> filters(RequestParams params);

在cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSL// 2.1.querybuildBasicQuery(params, request);// 2.2.设置sizerequest.source().size(0);// 2.3.聚合buildAggregation(request);// 3.发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Map<String, List<String>> result = new HashMap<>();Aggregations aggregations = response.getAggregations();// 4.1.根据品牌名称,获取品牌结果List<String> brandList = getAggByName(aggregations, "brandAgg");result.put("品牌", brandList);// 4.2.根据品牌名称,获取品牌结果List<String> cityList = getAggByName(aggregations, "cityAgg");result.put("城市", cityList);// 4.3.根据品牌名称,获取品牌结果List<String> starList = getAggByName(aggregations, "starAgg");result.put("星级", starList);return result;} catch (IOException e) {throw new RuntimeException(e);}
}private void buildAggregation(SearchRequest request) {request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(100));request.source().aggregation(AggregationBuilders.terms("cityAgg").field("city").size(100));request.source().aggregation(AggregationBuilders.terms("starAgg").field("starName").size(100));
}private List<String> getAggByName(Aggregations aggregations, String aggName) {// 4.1.根据聚合名称获取聚合结果Terms brandTerms = aggregations.get(aggName);// 4.2.获取bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();// 4.3.遍历List<String> brandList = new ArrayList<>();for (Terms.Bucket bucket : buckets) {// 4.4.获取keyString key = bucket.getKeyAsString();brandList.add(key);}return brandList;
}

2 自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

在这里插入图片描述

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1 拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

在这里插入图片描述

安装方式与IK分词器一样,分三步:

​ ① 解压

​ ② 上传到虚拟机中,elasticsearch的plugin目录
在这里插入图片描述

​ ③ 重启elasticsearch

​ ④ 测试

详细安装步骤可以参考IK分词器的安装过程。

测试用法如下:

POST /_analyze
{"text": "如家酒店还不错","analyzer": "pinyin"
}

结果:

在这里插入图片描述

2.2 自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

在这里插入图片描述

声明自定义分词器的语法如下:
我们可以在创建索引库时,通过settings来配置自定义的analyzer(分词器)

PUT /test
{"settings": {"analysis": {"analyzer": { // 自定义分词器"my_analyzer": {  // 分词器名称"tokenizer": "ik_max_word","filter": "py"}},"filter": { // 自定义tokenizer filter"py": { // 过滤器名称"type": "pinyin", // 过滤器类型,这里是pinyin"keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name": {"type": "text","analyzer": "my_analyzer","search_analyzer": "ik_smart"}}}
}

测试:

在这里插入图片描述

  • 更多的自定义可以查看文档使用
  • 拼音分词器适合在创建索引时使用,不能在搜索时候用,如果搜索时用拼音分词器,搜索"狮子爱跳舞",会搜出"虱子"等同音字。
    在这里插入图片描述
    因此在使用ik+拼音过滤的分词器时,建议创建的字段的索引分词器设为自定义分词器,搜索分词器设为ik分词器。防止搜索时搜出拼音谐音的情况。

总结:

如何使用拼音分词器?

  • ① 下载pinyin分词器

  • ② 解压并放到elasticsearch的plugin目录

  • ③ 重启即可

如何自定义分词器?

  • 创建索引库时,在settings中配置,可以包含三部分:

    • character filter

    • tokenizer

    • filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3 自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{"mappings": {"properties": {"title":{"type": "completion"}}}
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{"title": ["SK-II", "PITERA"]
}
POST test/_doc
{"title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{"suggest": {"title_suggest": {"text": "s", // 关键字"completion": {"field": "title", // 补全查询的字段"skip_duplicates": true, // 跳过重复的"size": 10 // 获取前10条结果}}}
}
  • 参与补全查询的字段必须是completion类型,数据是字符串数组。completion译为完成
  • 字段的内容一般是用来补全的多个词条形成的数组

2.4 实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

  5. 重新导入数据到hotel库

2.4.1 修改酒店映射结构

代码如下:

// 酒店数据索引库
PUT /hotel
{"settings": {"analysis": {"analyzer": {"text_anlyzer": {"tokenizer": "ik_max_word","filter": "py"},"completion_analyzer": {"tokenizer": "keyword","filter": "py"}},"filter": {"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"id":{"type": "keyword"},"name":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword"},"starName":{"type": "keyword"},"business":{"type": "keyword","copy_to": "all"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart"},"suggestion":{"type": "completion","analyzer": "completion_analyzer"}}}
}

2.4.2 修改HotelDoc实体类

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

package cn.itcast.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;private Object distance;private Boolean isAD;private List<String> suggestion;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();// 组装suggestionif(this.business.contains("/")){// business有多个值,需要切割String[] arr = this.business.split("/");// 添加元素this.suggestion = new ArrayList<>();this.suggestion.add(this.brand);Collections.addAll(this.suggestion, arr);}else {this.suggestion = Arrays.asList(this.brand, this.business);}}
}

2.4.3 重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

在这里插入图片描述

测试一下:
在这里插入图片描述

2.4.4 自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

在这里插入图片描述

而自动补全的结果也比较特殊,解析的代码如下:

在这里插入图片描述

2.4.5 实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
在这里插入图片描述

返回值是补全词条的集合,类型为List<String>

1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {return hotelService.getSuggestions(prefix);
}

2)在cn.itcast.hotel.service包下的IhotelService中添加方法:

List<String> getSuggestions(String prefix);

3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {try {// 1.准备RequestSearchRequest request = new SearchRequest("hotel");// 2.准备DSLrequest.source().suggest(new SuggestBuilder().addSuggestion("suggestions",SuggestBuilders.completionSuggestion("suggestion").prefix(prefix).skipDuplicates(true).size(10)));// 3.发起请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4.解析结果Suggest suggest = response.getSuggest();// 4.1.根据补全查询名称,获取补全结果CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");// 4.2.获取optionsList<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();// 4.3.遍历List<String> list = new ArrayList<>(options.size());for (CompletionSuggestion.Entry.Option option : options) {String text = option.getText().toString();list.add(text);}return list;} catch (IOException e) {throw new RuntimeException(e);}
}

3 数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步
在这里插入图片描述

3.1 思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1 同步调用

方案一:同步调用

在这里插入图片描述

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2 异步通知

方案二:异步通知

在这里插入图片描述

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3 监听binlog

方案三:监听binlog

在这里插入图片描述

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4 三种方式的优缺点

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2 实现数据同步

3.2.1 思路

资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能

3.2.2 导入demo

导入课前资料提供的hotel-admin项目,运行后,访问 http://localhost:8099

在这里插入图片描述

其中包含了酒店的CRUD功能:

在这里插入图片描述

3.2.3 声明交换机、队列

MQ结构如图:

在这里插入图片描述

  1. 引入依赖,修改yml文件

在hotel-admin、hotel-demo中引入rabbitmq的依赖,修改yml文件:

<!--amqp-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
spring:rabbitmq:host: 192.168.1.189port: 5672username: itcastpassword: 123321virtual-host: / #虚拟主机
  1. 声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

package cn.itcast.hotel.constatnts;public class MqConstants {/*** 交换机*/public final static String HOTEL_EXCHANGE = "hotel.topic";/*** 监听新增和修改的队列*/public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";/*** 监听删除的队列*/public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";/*** 新增或修改的RoutingKey*/public final static String HOTEL_INSERT_KEY = "hotel.insert";/*** 删除的RoutingKey*/public final static String HOTEL_DELETE_KEY = "hotel.delete";
}

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID: 如果新增时,ID已经存在,则修改;如果新增时,ID不存在,则新增。因此这儿只需要两个队列

  1. 声明队列交换机

在hotel-demo中,定义配置类,声明队列、交换机:

package cn.itcast.hotel.config;import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class MqConfig {@Beanpublic TopicExchange topicExchange(){return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);}@Beanpublic Queue insertQueue(){return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);}@Beanpublic Queue deleteQueue(){return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);}@Beanpublic Binding insertQueueBinding(){return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);}@Beanpublic Binding deleteQueueBinding(){return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);}
}

3.2.4 发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

消息内容为id,hotel-demo根据id增删改
由于消息会保存到mq中,而mq是基于内存的,如果把整个hotel都发送过去,会比较消耗内存,对于mq就很容易将队列占满,所以建议发送消息时,消息体尽量小一点,因此这里我们可以只发送hotel的id,对方可以根据id查到这个数据

在这里插入图片描述

3.2.5 接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {try {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", id.toString());// 2.发送请求client.delete(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}@Override
public void insertById(Long id) {try {// 0.根据id查询酒店数据Hotel hotel = getById(id);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2.准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

package cn.itcast.hotel.mq;import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;@Component
public class HotelListener {@Autowiredprivate IHotelService hotelService;/*** 监听酒店新增或修改的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)public void listenHotelInsertOrUpdate(Long id){hotelService.insertById(id);}/*** 监听酒店删除的业务* @param id 酒店id*/@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)public void listenHotelDelete(Long id){hotelService.deleteById(id);}
}

3.2.5 启动并测试数据同步功能

运行管理端和用户端服务后,打开rabbitmq服务端: http://192.168.1.189/15672,可以看到队列、交换机创建成功;以及交换机绑定关系

在这里插入图片描述
在管理端修改酒店信息后可以看到消息:
在这里插入图片描述
也可以查看到用户界面数据也已经修改。删除功能一样。

为了避免删除数据后就找不到了,可以 vue插件实现快速拷贝数据到表单

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

在这里插入图片描述

此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

在这里插入图片描述

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1 搭建ES集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

4.1.1 创建es集群

首先编写一个docker-compose.yml文件,内容如下:

version: '2.2'
services:es01:image: elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data02:/usr/share/elasticsearch/dataports:- 9201:9200networks:- elastices03:image: elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticports:- 9202:9200
volumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

在这里插入图片描述

4.1.2 集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

资料已经提供了安装包:
在这里插入图片描述
解压即可使用,非常方便。

解压好的目录如下:
在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

访问http://localhost:9000 即可进入管理界面:

在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:实心五角星是当前的主节点,空心五角星是候选节点

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

4.1.3 创建索引库

  1. 利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{"settings": {"number_of_shards": 3, // 分片数量"number_of_replicas": 1 // 副本数量},"mappings": {"properties": {// mapping映射定义 ...}}
}
  1. 利用cerebro创建索引库

利用cerebro还可以创建索引库:
在这里插入图片描述

填写索引库信息:

在这里插入图片描述

点击右下角的create按钮:

在这里插入图片描述

4.1.4 查看分片效果

回到首页,即可查看索引库分片效果:

在这里插入图片描述

4.2 集群脑裂问题

4.2.1 集群职责划分

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

在这里插入图片描述

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

在这里插入图片描述

此时,node2和node3认为node1宕机,就会重新选主:

在这里插入图片描述

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

在这里插入图片描述

解决脑裂的方案:要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3 小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

4.3 集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1 分片存储测试

插入三条数据:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

测试可以看到,三条数据分别在不同分片:

在这里插入图片描述

结果:

在这里插入图片描述

4.3.2 分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

在这里插入图片描述

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4 集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

coordinating node可以是三个节点中的任意一个(因为默认情况下,每个节点都是协调节点),也可以单独指定一个节点,无论访问的nodo1还是node2或者node3都会把请求分发给每一个分片

总结:

  • 分布式新增如何确定分片?
    • coordinating node根据id做hash运算,得到结果对shard数量取余,余数就是对应的分片
  • 分布式查询的两个阶段
    • 分散阶段: coordinating node将查询请求分发给不同分片
    • 收集阶段:将查询结果汇总到coordinating node ,整理并返回给用户

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:
在这里插入图片描述

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障(模拟es01宕机:docker-compose stop es01):

在这里插入图片描述

宕机后的第一件事,需要重新选主,例如选中了node2:

在这里插入图片描述

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3

在这里插入图片描述

在这里插入图片描述

此时重启node1 docker-compose start es01,发现会重新分配出两个分片到es01:
在这里插入图片描述

总结:

故障转移:

  • master宕机后,EligibleMaster选举为新的主节点。
  • master节点监控分片、节点状态,将故障节点上的分片转移到正常节点,确保数据安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/42818.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

POJ 1995 Raising Modulo Numbers 快速幂

一、总结 我一开始担心溢出&#xff0c;开了一个无符号的long long&#xff0c;但是直接超时&#xff0c;后来一看它的mod不是很大&#xff0c;于是改成int&#xff0c;直接过了。 二、代码 #include <iostream> using namespace std; int H, Z; int M; int mulMod(in…

Python基础教程:私有变量的访问和赋值教程

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 首先我们这里先描述下&#xff1a; Python中&#xff0c;变量名类似__x__的&#xff0c;以双下划线开头&#xff0c;并且以双下划线结尾的&#xff0c;是特殊变量&#xff0c;特殊变量是可以直接访问的&#xff08;比如 doc, __i…

SpringBoot3集成ElasticSearch

标签&#xff1a;ElasticSearch8.Kibana8&#xff1b; 一、简介 Elasticsearch是一个分布式、RESTful风格的搜索和数据分析引擎&#xff0c;适用于各种数据类型&#xff0c;数字、文本、地理位置、结构化数据、非结构化数据&#xff1b; 在实际的工作中&#xff0c;历经过Ela…

QT的设计器介绍

设计器介绍 Qt制作 UI 界面&#xff0c;一般可以通过UI制作工具QtDesigner和纯代码编写两种方式来实现。纯代码实现暂时在这里不阐述了在后续布局章节详细说明&#xff0c;QtDesigner已经继承到开发环境中&#xff0c;在工程中直接双击ui文件就可以直接在QtDesigner设计器中打…

【100天精通python】Day39:GUI界面编程_PyQt 从入门到实战(下)_图形绘制和动画效果,数据可视化,刷新交互

目录 专栏导读 6 图形绘制与动画效果 6.1 绘制基本图形、文本和图片 6.2 实现动画效果和过渡效果 7 数据可视化 7.1 使用 Matplotlib绘制图表 7.2 使用PyQtGraph绘制图表 7.3 数据的实时刷新和交互操作 7.3.1 数据的实时刷新 7.3.2 交互操作 7.4 自定义数据可视化…

【WPF】 本地化的最佳做法

【WPF】 本地化的最佳做法 资源文件英文资源文件 en-US.xaml中文资源文件 zh-CN.xaml 资源使用App.xaml主界面布局cs代码 App.config辅助类语言切换操作类资源 binding 解析类 实现效果 应用程序本地化有很多种方式&#xff0c;选择合适的才是最好的。这里只讨论一种方式&#…

Unity制作一个简单的登入注册页面

1.创建Canvas组件 首先我们创建一个Canvas画布&#xff0c;我们再在Canvas画布底下创建一个空物体&#xff0c;取名为Resgister。把空物体的锚点设置为全屏撑开。 2.我们在Resgister空物体底下创建一个Image组件&#xff0c;改名为bg。我们也把它 的锚点设置为全屏撑开状态。接…

【深入理解ES6】字符串和正则表达式

概念 字符串&#xff08;String&#xff09;是JavaScript6大原始数据类型。其他几个分别是Boolean、Null、Undefined、Number、Symbol&#xff08;es6新增&#xff09;。 更好的Unicode支持 1. UTF-16码位 字符串里的字符有两种&#xff1a; 前 个码位均以16位的编码单元…

总结,由于顺丰的问题,产生了电脑近期一个月死机问题集锦

由于我搬家&#xff0c;我妈搞顺丰发回家&#xff0c;但是没有检查有没有坏&#xff0c;并且我自己由于不可抗力因素&#xff0c;超过了索赔时间&#xff0c;反馈给顺丰客服&#xff0c;说超过了造成了无法索赔的情况&#xff0c;现在总结发生了损坏配件有几件&#xff0c;显卡…

文心一言最新重磅发布!

8月16日&#xff0c;由深度学习技术及应用国家工程研究中心主办的WAVE SUMMIT深度学习开发者大会2023举办。百度首席技术官、深度学习技术及应用国家工程研究中心主任王海峰以《大语言模型为通用人工智能带来曙光》为题&#xff0c;阐述了大语言模型具备理解、生成、逻辑、记忆…

【云原生】k8s存储管理中ConfigMap Secret的使用

目录 1 ConfigMap 1.1 简介 1.2 优点 1.3 定义 ConfigMap 1.4 使用 2 Secret 2.1 简介 2.1 定义 Secret 2.2 使用 1 ConfigMap 1.1 简介 在 Kubernetes 中&#xff0c;ConfigMap 是一种用于存储非敏感信息的 Kubernetes 对象。它用于存储配置数据&#xff0c;如键值…

Vue 2 动态组件和异步组件

先阅读 【Vue 2 组件基础】中的初步了解动态组件。 动态组件与keep-alive 我们知道动态组件使用is属性和component标签结合来切换不同组件。 下面给出一个示例&#xff1a; <!DOCTYPE html> <html><head><title>Vue 动态组件</title><scri…

Typora 相对路径保存图片以及 Gitee 无法显示图片

目录 Typora 相对路径保存图片 Gitee 无法显示图片 Typora 相对路径保存图片 Step1&#xff1a;修改 Typora 的偏好设置 自动在当前目录创建名为 "./${filename}.assets" 的文件夹粘贴图片到 md 中时&#xff0c;图片会自动另存到 "./${filename}.assets&qu…

LVGL基本控件介绍

1. 弧(lv_arc) 特点 弧的0度在右边&#xff0c;90度在下边 效果图 源码 void lv_arc_demo(void) {/* Create an Arc */lv_obj_t* arc lv_arc_create(lv_scr_act(), NULL);/* Set Background range */lv_arc_set_bg_angles(arc, 0, 360);/* Set Forward range */lv_arc_set…

第十课:Qt 字符编码和中文乱码相关问题

功能描述&#xff1a;最全的 Qt 字符编码相关知识以及中文乱码的原因与解决办法 一、字符编码种类 ASCII 码 美国人对信息交流的编码&#xff0c;包括 26 个字母&#xff08;大小写&#xff09;、数字和标点符号等&#xff0c;用一个字节&#xff08;8 位&#xff09;表示这些…

eNSP:VLAN-hybrid实验应用

实验要求&#xff1a; 拓扑图 配置 sw1: [sw1]vlan batch 2 to 6[sw1]int Ethernet 0/0/2 [sw1-Ethernet0/0/2]port link-type access [sw1-Ethernet0/0/2]port default vlan 2 [sw1-Ethernet0/0/2]int e 0/0/4 [sw1-Ethernet0/0/4]port link-ty access [sw1-Ethernet0/0/…

springBoot 配置文件 spring.mvc.throw-exception-if-no-handler-found 参数的作用

在Spring Boot应用中&#xff0c;可以通过配置文件来控制当找不到请求处理器&#xff08;handler&#xff09;时是否抛出异常。具体的配置参数是spring.mvc.throw-exception-if-no-handler-found。 默认情况下&#xff0c;该参数的值为false&#xff0c;即当找不到请求处理器时…

《Zookeeper》源码分析(十四)之 投票是如何发送与接收的

目录 MessengerWorkerSenderWorkerReceiver第5步&#xff1a;检验选票的epoch和version第6步&#xff1a;处理投票 Messenger Messenger管理接收到的消息以及待发送的消息&#xff0c;其源码如下&#xff1a; 它的源码比较简单&#xff0c;接下来着重介绍它维护的两个线程&a…

Docker 网络之 ipvlan 和 macvlan

Docker ipvlan 和 macvlan 引言 本文讲解了Docker 网络模式中的 ipvlan 和 macvlan 的区别,目前自己在生产环境中使用的 ipvlan 模式非常问题.也解决了实际业务问题. IPvlan L2 mode example ipvlan 无需网卡混杂模式 , 运行如下命令后可以生成一个 vlan 子接口 , 会和主网卡…