动态规划——双11既可以薅羊毛还能花钱最少

淘宝的“双十一”购物节有各种促销活动,比如“满 200 元减 50 元”。假设你的购物车中有 n 个(n>100)想买的商品,希望从里面选几个,在凑够满减条件的前提下,让选出来的商品价格总和最大程度地接近满减条件(200 元),这样就可以极大限度地“薅羊毛”。

回溯法

我们假设购物满w元才能减。例如满500减200,那w=500。购物车中商品的价格int[] price表示。每次决定第i个物品要不要购买,当物品选完了或者总价够w,停止选择。比较选中物品价格总和最低的一组选择。这是一个多阶段决策最优化问题。可以先用回溯算法解决。

public class Shopping {private int[] price = new int[]{198,201,345,200};private int w = 500;private int minPrice = Integer.MAX_VALUE;private List<Integer> selectItems;private void f (int i,int priceSum,boolean[] shoppingStatus){if(priceSum>w){if(priceSum<minPrice){minPrice = priceSum;selectItems = new ArrayList<Integer>();for(int j=0;j<shoppingStatus.length;j++){if(shoppingStatus[j]){selectItems.add(j);}}}return;}if(i==price.length) return;shoppingStatus[i] = true;f(i+1,priceSum+price[i],shoppingStatus);//选择第i件商品shoppingStatus[i] = false;f(i+1,priceSum,shoppingStatus);//不选择第i件商品}public void decision(){boolean[] shoppingStatus = new boolean[price.length];f(0,0,shoppingStatus);}
}

递归树

递归树中的每个节点是一个状态,用(i,preSum)表示。i表示将要处理第i个商品。preSum表示当前状态下已经购买商品的价格和。可以看到这里的状态表示的参数基本和f函数的参数是相同的。
在这个例子中,(i,preSum)相同的节点正好都只有一个,但不排除有多个节点的可能性。

状态表

根据(i,preSum)我们知道用一个二维表可以表示各种不同的状态。第一维(行)是商品下标,第二维(列)是商品总价。又因为题目要求价格和需要大于w,但我们又不能让商品和太大,太大优惠就没有必要了。我们需要给商品总价一个最大值3w。

状态表boolean[][] states。
第0个商品决策之后,states[0][0]=true;states[0][198]=true。
第1个商品决策之后,states[1][0]=true;states[1][201]=true;states[1][198]=true;states[1][399]=true;

我们在states[n-1]从下标w开始找值为true的元素下标。最先找到的就是符合要求的最小价格。
它与莱文斯坦距离、矩阵中的最短路径长度不同的地方是,不需要在每一步决策之后只保留最小值,其他节点放弃。
我想这里没有放弃其他节点,是因为这里的每一个状态可能就是最终答案。第i个商品是不是购买,和第i-1个商品决策之后的所有状态有关系。

	public void decisionDp(){int n = price.length;int maxw = 3*w;boolean[][] states = new boolean[n][maxw+1];states[0][0] = true;if(price[0]<maxw){states[0][price[0]] = true;}for(int i=1;i<n;i++){//不购买第i个for(int j=0;j<maxw+1;j++){if(states[i-1][j]){states[i][j] = true;}}//购买第i个for(int j = 0;j<maxw+1;j++){if(states[i-1][j]==true && j+price[i]<maxw){states[i][j+price[i]] = true;}}}int minPrice = -1;for(int j = w;j<maxw+1;j++){if(states[n-1][j]){minPrice = j;break;}}//说明有选择if(minPrice!=-1){System.out.println(minPrice);int j = minPrice;for(int i=n-1;i>=1;i--){if(j-price[i]>=0 && states[i-1][j-price[i]]){System.out.println(price[i]);//购买这件商品}}if(j!=0){System.out.println(price[0]);}}}

当然,这道题目还要一个难点是要输出选择了哪些商品。当我们知道满足要求的最低总价是minPrice。也就是说states[n-1][minPrice]=true。如果states[n-2][minPrice]=true,则说明第n-1号物品是被放弃的,不购买的。如果states[n-2][minPrice-price[n-1]]=true,说明是购买第n-1号商品的。继续递归往回查找。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/424528.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring学习(12):使用junit4进行单元测试

pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 …

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第23篇]写一个实现蒙哥马利算法的C程序

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 这次博客我将通过对蒙哥马利算法的一个实际的实现&#xff0c;来补充我们上周蒙哥马利算法的理论方面。这个…

spring学习(13):使用junit4进行单元测试续

加入spring test.jar包 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven…

《java程序员修炼之道》pdf书籍

链接&#xff1a;https://pan.baidu.com/s/1bbsTPCpUNI9klh40-8Be7w 提取码&#xff1a;pc57 转载于:https://www.cnblogs.com/pyweb/p/10995145.html

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第24篇]描述一个二进制m组的滑动窗口指数算法

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 二进制算法 二进制模幂算法和传统的求幂的二次方方法非常像。实际上&#xff0c;唯一的不同就是我们把N表示…

第五十八期:从0到1 手把手教你建一个区块链

近期的区块链重回热点&#xff0c;如果你想深入了解区块链&#xff0c;那就来看一下本文&#xff0c;手把手教你构建一个自己的区块链。 作者&#xff1a;Captain编译 近期的区块链重回热点&#xff0c;如果你想深入了解区块链&#xff0c;那就来看一下本文&#xff0c;手把手…

动态规划——硬币找零思路

找零的两种问题 硬币找零问题&#xff0c;有两种。一种用贪心解决&#xff0c;一种用动态规划解决。 问题1&#xff1a;假设我们有 v1&#xff0c;v2&#xff0c;……&#xff0c;vn&#xff08;单位是元&#xff09;这些币值的硬币&#xff0c;它们的张数分别是 c1、c2、…, …

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第25篇]使用特殊的素数定义GF(p)和GF(2^n)的方法

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 当实现密码学方案时&#xff0c;一个最频繁调用的操作就是模运算。不幸的是&#xff0c;尽管模块化的使用非…

第五十九期:如何在Windows 10中执行Windows Defender离线扫描?

如果你使用Windows并经常上网浏览&#xff0c;强烈建议使用防病毒/安全保护软件。Windows 10随带一款名为Windows Defender/Security的内置防病毒保护工具&#xff0c;在过去几年不断成熟&#xff0c;已成为一种优秀的安全解决方案。 作者&#xff1a;布加迪编译 如果你使用Wi…

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第26篇]描述NAF标量乘法算法

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 [1] Hankerson, Darrel, Scott Vanstone, and Alfred J. Menezes. “Guide to elliptic curve cryptography…

第六十一期: 从7600万个5G连接中,我们发现了7种最有前景的5G物联网应用

近日&#xff0c;物联网市场调研机构IoT Analytics调研了44种不同的5G物联网用例&#xff0c;预计到2025年&#xff0c;这些用例将覆盖7600万个5G节点&#xff0c;本文重点介绍了其中7种最有市场前景的5G物联网用例。 作者&#xff1a;物联网智库 5G是第五代移动通信技术&…

动态规划——变形的杨辉三角形

我们现在对杨辉三角进行一些改造。每个位置的数字可以随意填写&#xff0c;经过某个数字只能到达下面一层相邻的两个数字。 假设你站在第一层&#xff0c;往下移动&#xff0c;我们把移动到最底层所经过的所有数字之和&#xff0c;定义为路径的长度。请你编程求出从最高层移动…

第六十期:玩了分布式这么久,你不会连Kafka都不清楚吧

Kafka 现在在企业和互联网项目中的应用越来越多了&#xff0c;本篇文章就从 Kafka 的基础开始带你一展 Kafka 的宏图。 作者&#xff1a;cxuan Kafka 现在在企业和互联网项目中的应用越来越多了&#xff0c;本篇文章就从 Kafka 的基础开始带你一展 Kafka 的宏图。 图片来自 Pe…

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第29篇]什么是UF-CMA数字签名的定义?

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 第16篇博客给出了DSA&#xff0c;Schnoor和RSA-FDH签名方案的细节&#xff0c;但是签名方案是什么&#xff…

第六十二期:看完这篇还不了解Nginx,那我就哭了!

看完这篇还不了解Nginx&#xff0c;那我就哭了&#xff01; Nginx 同 Apache 一样都是一种 Web 服务器。基于 REST 架构风格&#xff0c;以统一资源描述符(Uniform Resources Identifier)URI 或者统一资源定位符(Uniform Resources Locator)URL 作为沟通依据&#xff0c;通过 …

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第30篇]大致简述密钥协商中的BR安全定义

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 在两方之间建密钥共享是一件密码学中古老的问题。就算只考虑定义也比标准加密困难的多。尽管古典的Diffie-H…

算法七——分治算法

文章出处&#xff1a;极客时间《数据结构和算法之美》-作者&#xff1a;王争。该系列文章是本人的学习笔记。 MapReduce本质就是一个分值算法。 什么是分治算法 分治算法的核心是&#xff1a;分而治之。也就是将原问题分解为n个规模较小&#xff0c;并且结构与原问题相似的子…

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第31篇]Game Hopping证明

这是一系列博客文章中最新的一篇&#xff0c;该文章列举了“每个博士生在做密码学时应该知道的52件事”:一系列问题的汇编是为了让博士生们在第一年结束时知道些什么。 关于安全证明, 目前主流的方法有安全归约证明 (由 single game 实现) 和 Game Hopping (由 game sequence 实…

第六十三期:放下你手里的代码,小心被抓!

放下你手里的代码&#xff0c;小心被抓。最近程序员圈子不乏这样的戏谑调侃。 作者&#xff1a;沈春泽、李加庆来源 放下你手里的代码&#xff0c;小心被抓。最近程序员圈子不乏这样的戏谑调侃。 图片来自 Pexels 原因是最近发生的多起涉及爬虫技术的公司被司法部门调查。近…

算法九——回溯算法

文章出处&#xff1a;极客时间《数据结构和算法之美》-作者&#xff1a;王争。该系列文章是本人的学习笔记。 理解回溯 在我们的一生中&#xff0c;会遇到很多重要的岔路口。在岔路口上&#xff0c;每个选择都会影响我们今后的人生。有的人在每个岔路口都能做出最正确的选择&…