目录
- 概念
- C++源码
- OtsuThreshold
- 主函数
- 效果
- 完整源码
平台:Windows 10 20H2
Visual Studio 2015
OpenCV 4.5.3
本文所用源码修改自C++ opencv 图片二值化最佳阈值确定(大津法,OTSU算法)——Sharon Liu
概念
Otsu算法,也叫最大类间方差法,是1979年由日本学者大津提出的(所以也叫大津法),是一种自适应阈值确定的方法,一种全局的二值化算法。
它是根据图像的灰度特性,将图像分为前景和背景两个部分。 当取最佳阈值时,两部分之间的差别应该是最大的。在Otsu算法中所采用的衡量差别的标准就是较为常见的最大类间方差。前景和背景之间的类间方差如果越大,就说明构成图像的两个部分之间的差别越大。
当部分目标被错分为背景或部分背景被错分为目标,都会导致两部分差别变小。
当所取阈值的分割使类间方差最大时,就意味着错分概率最小。
C++源码
OtsuThreshold
/******************************************************************************************
Function: OtsuThreshold
Description: 图片二值化最佳阈值确定(大津法,OTSU算法)
Input: src:原图片
Return: 阈值
******************************************************************************************/
int OtsuThreshold(Mat src)
{int threshold;try{int height = src.rows;int width = src.cols;//histogram float histogram[256] = { 0 };for (int i = 0; i < height; i++) {unsigned char* p = (unsigned char*)src.data + src.step*i;for (int j = 0; j < width; j++) {histogram[*p++]++;}}//normalize histogram int size = height*width;for (int i = 0; i < 256; i++) {histogram[i] = histogram[i] / size;}//average pixel value float avgValue = 0;for (int i = 0; i < 256; i++) {avgValue += i*histogram[i];}float maxVariance = 0;float w = 0, u = 0;for (int i = 0; i < 256; i++) {w += histogram[i];u += i*histogram[i];float t = avgValue*w - u;float variance = t*t / (w*(1 - w));if (variance > maxVariance) {maxVariance = variance;threshold = i;}}}catch (cv::Exception e){}return threshold;
}
//————————————————
//版权声明:本文为CSDN博主「Sharon Liu」的原创文章,遵循CC 4.0 BY - SA版权协议,转载请附上原文出处链接及本声明。
//原文链接:https ://blog.csdn.net/sylsjane/article/details/80872744
主函数
图片路径根据实际情况调整,注意反斜杠是转义字符的开头,故“\”应替换为“\\”
int main(int argc, char * argv[])
{Mat Image = imread("D:\\Work\\OpenCV\\Workplace\\Test_1\\1.jpg", 0);int thresholdValue = OtsuThreshold(Image);cout << "类间方差为: " << thresholdValue << endl;Mat imageOutput;threshold(Image, imageOutput, thresholdValue, 255, CV_THRESH_BINARY);Mat imageOtsu;threshold(Image, imageOtsu, 0, 255, CV_THRESH_OTSU); //Opencv Otsu算法imshow("原图", Image);imshow("Output Image", imageOutput);imshow("Opencv Otsu", imageOtsu);waitKey(0);return 0;
}
效果
原图
效果
OpenCv自带的Otsu算法结果,与上图一致
完整源码
#include <opencv2\opencv.hpp>
#include <iostream>
#include <opencv2\imgproc\types_c.h>using namespace cv;
using namespace std;/******************************************************************************************
Function: OtsuThreshold
Description: 图片二值化最佳阈值确定(大津法,OTSU算法)
Input: src:原图片
Return: 阈值
******************************************************************************************/
int OtsuThreshold(Mat src)
{int threshold;try{int height = src.rows;int width = src.cols;//histogram float histogram[256] = { 0 };for (int i = 0; i < height; i++) {unsigned char* p = (unsigned char*)src.data + src.step*i;for (int j = 0; j < width; j++) {histogram[*p++]++;}}//normalize histogram int size = height*width;for (int i = 0; i < 256; i++) {histogram[i] = histogram[i] / size;}//average pixel value float avgValue = 0;for (int i = 0; i < 256; i++) {avgValue += i*histogram[i];}float maxVariance = 0;float w = 0, u = 0;for (int i = 0; i < 256; i++) {w += histogram[i];u += i*histogram[i];float t = avgValue*w - u;float variance = t*t / (w*(1 - w));if (variance > maxVariance) {maxVariance = variance;threshold = i;}}}catch (cv::Exception e){}return threshold;
}
//————————————————
//版权声明:本文为CSDN博主「Sharon Liu」的原创文章,遵循CC 4.0 BY - SA版权协议,转载请附上原文出处链接及本声明。
//原文链接:https ://blog.csdn.net/sylsjane/article/details/80872744int main(int argc, char * argv[])
{Mat Image = imread("D:\\Work\\OpenCV\\Workplace\\Test_1\\1.jpg", 0);int thresholdValue = OtsuThreshold(Image);cout << "类间方差为: " << thresholdValue << endl;Mat imageOutput;threshold(Image, imageOutput, thresholdValue, 255, CV_THRESH_BINARY);Mat imageOtsu;threshold(Image, imageOtsu, 0, 255, CV_THRESH_OTSU); //Opencv Otsu算法imshow("原图", Image);imshow("Output Image", imageOutput);imshow("Opencv Otsu", imageOtsu);waitKey(0);return 0;
}