稀疏感知图像和体数据恢复的系统对象研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

稀疏感知图像和体数据恢复是一种用于恢复损坏、噪声或不完整的图像和体数据的技术。它利用了信号的稀疏性,即信号在某种基础下可以用较少的非零系数表示,从而实现高质量的恢复。

在进行稀疏感知图像和体数据恢复的研究时,需要定义一些系统对象。这些对象描述了系统中的各个组成部分和它们之间的关系,有助于实现恢复算法的设计和实现。

系统对象的定义包括以下几个方面:

1. 输入数据对象:这个对象描述了输入的损坏、噪声或不完整的图像或体数据。它可以是一个图像矩阵、一个体数据的三维数组或其他适当的数据结构。

2. 稀疏表示对象:这个对象描述了信号的稀疏表示。它可以是一个稀疏矩阵、一个稀疏系数向量或其他适当的数据结构。稀疏表示对象是恢复算法的关键部分,它通过选择适当的基础和优化方法来实现信号的稀疏表示。

3. 恢复算法对象:这个对象描述了用于恢复稀疏感知图像和体数据的算法。它可以是一个迭代算法、一个优化算法或其他适当的算法。恢复算法对象通常包括对输入数据对象和稀疏表示对象的处理步骤,以及对恢复结果的评估和优化步骤。

4. 输出数据对象:这个对象描述了恢复后的图像或体数据。它可以是一个恢复后的图像矩阵、一个恢复后的体数据的三维数组或其他适当的数据结构。

通过定义这些系统对象,研究人员可以更好地理解稀疏感知图像和体数据恢复的过程,并设计出高效、准确的恢复算法。这些系统对象的定义还可以为稀疏感知图像和体数据恢复的实际应用提供指导,例如医学图像处理、计算机视觉和图像压缩等领域。

📚2 运行结果

 

 部分代码:

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...'DataType', 'Image',...'SourceImage',   orgImg,...    % Original image'ObservedImage', obsImg,...    % Observed image'IsMSE',         false,...     % Switch for MSE  evaluation'IsPSNR',        true,...      % Switch for PSNR evaluation'IsSSIM',        false,...     % Switch for SSIM evaluation'IsVerbose',     isverbose,... % Switch for verbose mode'IsVisible',     isvisible,... % Switch for display intermediate result'ImageFigureHandle',hfig2);    % Figure handle% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...'SourceImage',orgImg,...'MaxIter', 1,...'IsMSE',  false,...'IsPSNR', true,...'IsSSIM', false,...'IsVisible', false,...'IsVerbose', isverbose);% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.hfig3 = figure(3);% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem

% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';

% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
    'DataType', 'Image',...
    'SourceImage',   orgImg,...    % Original image
    'ObservedImage', obsImg,...    % Observed image
    'IsMSE',         false,...     % Switch for MSE  evaluation
    'IsPSNR',        true,...      % Switch for PSNR evaluation
    'IsSSIM',        false,...     % Switch for SSIM evaluation
    'IsVerbose',     isverbose,... % Switch for verbose mode
    'IsVisible',     isvisible,... % Switch for display intermediate result
    'ImageFigureHandle',hfig2);    % Figure handle
    
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;

%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.

fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration

%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. 

nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);

%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.

% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
    'SourceImage',orgImg,...
    'MaxIter', 1,...
    'IsMSE',  false,...
    'IsPSNR', true,...
    'IsSSIM', false,...
    'IsVisible', false,...
    'IsVerbose', isverbose);

% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;

% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));

% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);

% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem

%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.

hfig3 = figure(3);

% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')

% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')

% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])

% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]薛明.压缩感知及稀疏性分解在图像复原中的应用研究[D].西安电子科技大学,2011.DOI:CNKI:CDMD:2.2010.083018.

  • uiki Kobayashi, Shogo Muramatsu, Shunsuke Ono, "Proximal Gradient-Based Loop Unrolling with Interscale Thresholding," Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2021

  • Genki Fujii, Yuta Yoshida, Shogo Muramatsu, Shunsuke Ono, Samuel Choi, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration with Latent Distribution of Refractive Index," Proc. of 2019 IEEE International Conference on Image Processing (ICIP), pp.764-768, Sept. 2019

  • Yuhei Kaneko, Shogo Muramatsu, Hiroyasu Yasuda, Kiyoshi Hayasaka, Yu Otake, Shunsuke Ono, Masahiro Yukawa, "Convolutional-Sparse-Coded Dynamic Mode Decompsition and Its Application to River State Estimation," Proc. of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1872-1876, May 2019

  • Shogo Muramatsu, Samuel Choi, Shunske Ono, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration via Primal-Dual Plug-and-Play Method," Proc. of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.801-805, Apr. 2018

  • Shogo Muramatsu, Kosuke Furuya and Naotaka Yuki, "Multidimensional Nonseparable Oversampled Lapped Transforms: Theory and Design," IEEE Trans. on Signal Process., Vol.65, No.5, pp.1251-1264, DOI:10.1109/TSP.2016.2633240, March 2017

  • Kota Horiuchi and Shogo Muramatsu, "Fast convolution technique for Non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2016

  • Shogo Muramatsu, Masaki Ishii and Zhiyu Chen, "Efficient Parameter Optimization for Example-Based Design of Non-separable Oversampled Lapped Transform," Proc. of 2016 IEEE Intl. Conf. on Image Process. (ICIP), pp.3618-3622, Sept. 2016

  • Shogo Muramatsu, "Structured Dictionary Learning with 2-D Non-separable Oversampled Lapped Transform," Proc. of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2643-2647, May 2014

  • Kousuke Furuya, Shintaro Hara and Shogo Muramatsu, "Boundary Operation of 2-D non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Nov. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Image Restoration with 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Image Process. (ICIP), pp.1051-1055, Sep. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Lattice Structures for 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP), pp.5632-5636, May 2013

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39719.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32 F103C8T6学习笔记6:IIC通信__驱动MPU6050 6轴运动处理组件—一阶互补滤波

今日主要学习一款倾角传感器——MPU6050,往后对单片机原理基础讲的会比较少,更倾向于简单粗暴地贴代码,因为经过前些日子对MSP432的学习,对原理方面也有些熟络了,除了在新接触它时会对其引脚、时钟、总线等进行仔细一些的研究之外…

ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) 二、CVE-2017-15031 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) Title 未初始化或保存/恢复PMCR_EL0可能会泄露安全世界的时间信息 CVE ID CVE-2017-1503…

101.for循环语句练习题-求数列前n项的平方和

【目录】 文章目录 101.for循环语句练习题-求数列前n项的平方和1. 求数列前n项的平方和2. 幂函数3. f 字符串格式化语法4. 基础代码5. 自定义函数代码6. 递归函数代码7. 代码总结 【正文】 101.for循环语句练习题-求数列前n项的平方和 1. 求数列前n项的平方和 【目标任务】 …

spark的standalone 分布式搭建

一、环境准备 集群环境hadoop11,hadoop12 ,hadoop13 安装 zookeeper 和 HDFS 1、启动zookeeper -- 启动zookeeper(11,12,13都需要启动) xcall.sh zkServer.sh start -- 或者 zk.sh start -- xcall.sh 和zk.sh都是自己写的脚本-- 查看进程 jps -- 有…

C++中配置OpenCV的教程

首先去OpenCV的官网下载OpenCV安装包,选择合适的平台和版本进行下载,我下载的是Windows的OpenCV-4.7.0版本。OpenCV下载地址 下载好后,解压到自己指定的路径。 配置环境变量: WinR键打开运行窗口,输入sysdm.cpl打开系…

星星之火:国产讯飞星火大模型的实际使用体验(与GPT对比)

#AIGC技术内容创作征文|全网寻找AI创作者,快来释放你的创作潜能吧!# 文章目录 1 前言2 测试详情2.1 文案写作2.2 知识写作2.3 阅读理解2.4 语意测试(重点关注)2.5 常识性测试(重点关注)2.6 代码…

常识判断

头像 carrin~👻 产品经理 225/753 75/302.5 30/152 15/101.5 等差数列,所以最后一个是10/101 收起 60 回复 发布于 2020-02-18 16:33

Mysql之explain详解

1. explain作用 使用explain可以展示出sql语句的执行计划,再根据sql的执行计划去判断这条sql有哪些点可以进行优化,从而让sql的效率达到最大化。 2. 执行计划各列含义 (1)id:id列是select的序列号,这个…

React18TS项目:配置react-css-modules,使用styleName

他的好处不说了 网上一堆文章一个能打的都没有, 添加开发依赖 pnpm add -D dr.pogodin/babel-plugin-react-css-modules types/react-css-modules Babel Plugin "React CSS Modules" | Dr. Pogodin Studio 看dr.pogodin/babel-plugin-react-css-mo…

centos7安装erlang及rabbitMQ

下载前注意事项: 第一:自己的系统版本,centos中uname -a指令可以查看,el8,el7,rabbitMQ的包不一样! 第二:根据rabbitMQ中erlang version找到想要下载rabbitMQ对应erlang版本&#x…

封装、继承、多态

封装是什么? 封装是面向对象的特征之一,是对象和类概念的主要特性。 封装,也就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏。 封装,是把客观…

C++储备

一、类的 三大特性 封装,继承,多态 二、虚函数 为啥要用到虚函数 C虚函数详解_Whitesad_的博客-CSDN博客 三、函数重载 四、封装的保护权限 1.public 成员类内,内外都可以访问 2.protected 成员,类内可以访问&#xff0c…

大牛分析相机镜头光学中疑难问题

1、变焦和对焦有什么区别? 变焦就是改变镜头的焦距(准确说是像距),以改变拍摄的视角,也就是通常所说的把被摄体拉近或推远。例如18-55mm和70-200mm镜头就是典型的变焦镜头。焦距越长,视角越窄。 对焦通常指调整镜片组和底片(传感器平面)之间的距离,从而使被摄物在CC…

SElinux 导致 Keepalived 检测脚本无法执行

哈喽大家好,我是咸鱼 今天我们来看一个关于 Keepalived 检测脚本无法执行的问题 一位粉丝后台私信我,说他部署的 keepalived 集群 vrrp_script 模块中的脚本执行失败了,但是手动执行这个脚本却没有任何问题 这个问题也是咸鱼第一次遇到&…

《安富莱嵌入式周报》第320期:键盘敲击声解码, 军工级boot设计,开源CNC运动控制器,C语言设计笔记,开源GPS车辆跟踪器,一键生成RTOS任务链表

周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版: https://www.bilibili.com/video/BV1Cr4y1d7Mp/ 《安富莱嵌入式周报》第320期:键盘敲击…

【智慧工地源码】:人工智能、BIM技术、机器学习在智慧工地的应用

智慧工地云平台是专为建筑施工领域所打造的一体化信息管理平台。通过大数据、云计算、人工智能、BIM、物联网和移动互联网等高科技技术手段,将施工区域各系统数据汇总,建立可视化数字工地。同时,围绕人、机、料、法、环等各方面关键因素&…

理解持续测试,才算理解DevOps

软件产品的成功与否,在很大程度上取决于对市场需求的及时把控,采用DevOps可以加快产品交付速度,改善用户体验,从而有助于保持领先于竞争对手的优势。 作为敏捷开发方法论的一种扩展,DevOps强调开发、测试和运维不同团…

centos如何安装libssl-dev libsdl-dev libavcodec-dev libavutil-dev ffmpeg

在 CentOS 系统上安装这些包可以按照以下步骤进行: 打开终端,使用 root 或具有管理员权限的用户登录。 使用以下命令安装 libssl-dev 包: yum install openssl-devel使用以下命令安装 libsdl-dev 包: yum install SDL-devel使用以…

Go 安装配置

介绍Ubuntu20.04 安装和配置Go 1.安装Go 去这个地方下载Go https://go.dev/doc/install 如果之前安装过,可以参考这个(没有可以忽略) 下载完成后执行 sudo tar -C /usr/local -xzf go1.21.0.linux-amd64.tar.gz 然后修改环境变量 sudo ge…

css3-grid:grid 布局 / 基础使用

一、理解 grid 二、理解 css grid 布局 CSS Grid布局是一个二维的布局系统,它允许我们通过定义网格和网格中每个元素的位置和尺寸来进行页面布局。CSS Grid是一个非常强大的布局系统,它不仅可以用于构建网格布局,还可以用于定位元素&#xf…