风能matlab仿真_发现潜力:使用计算机视觉对可再生风能发电场的主要区域进行分类(第1部分)

风能matlab仿真

Github Repo: https://github.com/codeamt/WindFarmSpotter

Github回购: https : //github.com/codeamt/WindFarmSpotter

This is a series:

这是一个系列:

  • Part 1: A Brief Introduction on Leveraging Edge Devices and Embedded AI to Track the U.S.Wind Energy Footprint (You are Here)

    第1部分:有关利用边缘设备和嵌入式AI跟踪USWind能源足迹的简要介绍(您在这里)

  • Part 2: An Approach to Satelite Arial Image Data Generation and Automation with Google Earth Engine, Basemap, and Colab

    第2部分: 使用Google Earth Engine,底图和Colab进行卫星Arial图像数据生成和自动化的方法

  • Part 3: Experimenting with Memory, Efficiency, and Scaling Input Resolution using a Fast.ai v3 Training Pipeline

    第3部分: 使用Fast.ai v3培训管道试验内存,效率和扩展输入分辨率

  • Part 4: Running Inference Tests: Swift-Python Interoperability, and Hardware Acceleration

    第4部分:运行推理测试:Swift-Python互操作性和硬件加速

  • Part 5: Spinning Up Inference APIs — Flask (Just Python) v. Kitura (Python & Swift)

    第5部分 :旋转推理API — Flask(仅Python)诉Kitura(Python和Swift)

  • Part 6: Containerizing Deployments for Web, ARMv8/Jetson NVIDIA Series, and SWAP Hardware Platforms

    第6部分: Web,ARMv8 / Jetson NVIDIA系列和SWAP硬件平台的容器化部署

Recently, I completed a data science and software engineering project as part of a hiring pipeline.

最近,我在招聘流程中完成了一个数据科学和软件工程项目。

The company (and I’ll keep the entity anonymous for now) takes a novel approach to the technical interview — lending applicants an NVIDIA Jetson TX2 GPU with free range to execute on a deep learning area of interest.

该公司(我现在将实体保持匿名)将采用一种新颖的方式进行技术面试-向申请人提供具有自由范围的NVIDIA Jetson TX2 GPU,以便在感兴趣的深度学习领域内执行。

关注的领域:风电场—确定潜在的扩展区域,这意味着通过公吨减少碳排放(CO2) (Area of Interest: Wind Farms — Identifying Potential Areas of Expansion Means Reducing Carbon Emission (CO2) by the Metric Ton)

Given the election season and lots of mention of shifting to renewable energy sources being key to lowering our Carbon Footprint, I took this opportunity to learn more about various forms of energy and realized Wind Energy has lots to offer!

鉴于选举季节和降低可再生能源足迹的关键,很多人都提到转向可再生能源,因此我借此机会了解了更多有关各种形式能源的信息,并意识到风能提供了很多!

During my research, I found this fact sheet published by the University of Michigan that laid out the value propositions of Wind Energy. The publication highlighted that:

在研究过程中,我发现了密歇根大学发布的这份情况说明书 ,列出了风能的价值主张。 该出版物强调:

  • Increasing Wind Capacity by 1 GigaWatt (GW) avoids the need for Carbon (CO2) Emission by a couple of million metric tons and reduces the need for Water (for Power plants) by roughly a million gallons.

    将风力发电能力提高1吉瓦(GW),可避免将碳(CO2)排放减少几百万公吨,并减少大约一百万加仑的水(用于发电厂)。
  • Previous research from 2015 found that if Wind Turbines — the central technology of Wind Farms — generated 35% of our electricity, this would eliminate 510 billion kg of CO2 emissions annually.

    2015年的先前研究发现,如果风力涡轮机 ( 风力发电场的核心技术)产生了我们35%的电力,那么每年将减少5100亿公斤的二氧化碳排放。

  • Wind Farms do not disturb the peace. Given a 350meter radius, Wind Farms emit roughly the same amount of noise (35–45 decibels) as a quiet bedroom (35 decibels) and less noise than a car driving 40mph (55 decibels).

    风电场不会干扰和平。 在半径为350米的情况下,风电场发出的噪音与安静的卧室(35分贝)大致相同(35-45分贝),并且比以40英里/小时的速度行驶(55分贝)的汽车要

  • Wind Energy is very cost-effective. In terms of residential energy prices, in 2016, typical energy quotes were based on the rate of 12.9¢/kWh, where wind energy would only be 2¢/kWh. (That’s right, wind energy would make your electricity bill 6x cheaper!)

    风能非常划算。 在居民能源价格方面,2016年,典型能源报价基于12.9美分/千瓦时的价格,而风能仅为2美分/千瓦时。 (是的,风能会使您的电费便宜6倍!)
  • For Wind Farmers, working on large capacity projects (defined in the fact sheet as >= 83 acres), the ROI ratio is $4 to $1.

    对于从事大型项目(在情况说明书中定义为> = 83英亩)的风力发电场,ROI比率为4:1。

Learning about this market has been a whirlwind, to say the least.

至少可以说,了解这个市场是一个旋风。

All this new knowledge made me wonder if data science/deep learning and specifically, computer vision, could help in “spotting potential” regions of interest for new Wind Farm projects and this initial inquiry led to the core idea of my project Wind Farm Spotter: an inference engine for classifying the capacity of existing land-based Wind Farms and potential capacity of unoccupied locations from satellite images.

所有这些新知识使我想知道,数据科学/深度学习,特别是计算机视觉是否可以帮助“发现”新风电场项目的潜在感兴趣区域,而最初的询问导致了我的项目“风电场观测者”的核心思想:推理引擎,用于根据卫星图像对现有陆上风电场的容量和未占用位置的潜在容量进行分类。

项目范围:开发用于风电场观测器的机器学习管道的端到端演练 (Project Scope: An End-to-End Walkthrough of Developing a Machine Learning Pipeline for Wind Farm Spotter)

In subsequent posts, I’ll share my thoughts and findings on developing an end-to-end Machine Learning Pipeline and creating inference engine deployments for web and fog/edge SWAP Hardware Architecture.

在随后的文章中,我将分享我对开发端到端机器学习管道以及为Web和fog / edge SWAP硬件架构创建推理引擎部署的想法和发现。

Tools and Environment:

工具和环境:

Software used to develop this project include:

用于开发此项目的软件包括:

  • Google Earth Engine

    Google Earth Engine
  • Basemap

    底图
  • ArcGIS API Service

    ArcGIS API服务
  • PyTorch 1.1 / Torchvision

    PyTorch 1.1 / Torchvision
  • pytorchcv

    pytorchcv
  • Fast.ai v3

    Fast.ai v3
  • Python 3.6, Flask

    Python 3.6,烧瓶
  • Swift 5.0.1, Kitura

    雨燕5.0.1,基图拉
  • Jetpack 4.3

    喷气背包4.3
  • XQuartz (X11)

    XQuartz(X11)
  • Virtualenv

    虚拟环境
  • Docker Community Edition, Edge

    Docker社区版,Edge

Environment:

环境:

  • Google Drive

    Google云端硬碟
  • Google Colab

    Google Colab
  • MacBook Pro

    MacBook Pro
  • Jetson TX2

    杰特逊TX2
  • Ubuntu 18.04.3

    Ubuntu 18.04.3

Stay tuned for future posts! The code repository for this series can be found here.

请继续关注以后的帖子! 该系列的代码存储库可以在这里找到。

Keep Reading:

继续阅读:

Next Post: Part 2: An Approach to Satelite Arial Image Data Generation and Automation with Google Earth Engine, Basemap, and Colab

下一篇文章:第2部分: 使用Google Earth Engine,底图和Colab进行卫星Arial图像数据生成和自动化的方法

翻译自: https://medium.com/experimenting-with-deep-learning/spotting-potential-classifying-prime-areas-for-renewable-wind-energy-farms-with-computer-vision-3085018c821c

风能matlab仿真

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/392425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Leetcode_easy】821. Shortest Distance to a Character

problem 821. Shortest Distance to a Character 参考 1. Leetcode_easy_821. Shortest Distance to a Character; 完转载于:https://www.cnblogs.com/happyamyhope/p/11214805.html

tdd测试驱动开发课程介绍_测试驱动开发的实用介绍

tdd测试驱动开发课程介绍by Luca Piccinelli通过卢卡皮奇内利 测试驱动开发很难! 这是不为人知的事实。 (Test Driven Development is hard! This is the untold truth about it.) These days you read a ton of articles about all the advantages of doing Test …

软件安装(JDK+MySQL+TOMCAT)

一,JDK安装 1,查看当前Linux系统是否已经安装了JDK 输入 rpm -qa | grep java 如果有: 卸载两个openJDK,输入rpm -e --nodeps 要卸载的软件 2,上传JDK到Linux 3,安装jdk运行需要的插件yum install gl…

leetcode 205. 同构字符串(hash)

给定两个字符串 s 和 t,判断它们是否是同构的。 如果 s 中的字符可以被替换得到 t ,那么这两个字符串是同构的。 所有出现的字符都必须用另一个字符替换,同时保留字符的顺序。两个字符不能映射到同一个字符上,但字符可以映射自己…

Java core 包_feilong-core 让Java开发更简便的工具包

## 背景在JAVA开发过程中,经常看到小伙伴直接从网上copy一长段代码来使用,又或者写的代码很长很长很长...**痛点在于:*** 难以阅读* 难以维护* sonar扫描结果债务长* codereview 被小伙伴鄙视* ....feilong-core focus on J2SE,是[feilong platform](https://github.com/venusd…

TensorFlow 2.X中的动手NLP深度学习模型准备

简介:为什么我写这篇文章 (Intro: why I wrote this post) Many state-of-the-art results in NLP problems are achieved by using DL (deep learning), and probably you want to use deep learning style to solve NLP problems as well. While there are a lot …

静态代码块

静态代码块 静态代码块:定义在成员位置,使用static修饰的代码块{ }。位置:类中方法外。执行:随着类的加载而执行且执行一次,优先于main方法和构造方法的执行。格式:作用: 给类变量进行初始化赋值…

异步api_如何设计无服务器异步API

异步apiby Garrett Vargas通过Garrett Vargas 如何设计无服务器异步API (How To Design a Serverless Async API) I recently ran a workshop to teach developers how to create an Alexa skill. The workshop material centered around a project to return car rental sear…

C# 序列化与反序列化json

与合作伙伴讨论问题,说到的c与c#数据的转换调用,正好就说到了序列化与反序列化,同样也可用于不同语言间的调用,做了基础示例,作以下整理: 1 using System.Data;2 using System.Drawing;3 using System.Linq…

学java 的要点_零基础学Java,掌握Java的基础要点

对于程序员群体来说,了解一定的技巧会对学习专业技能更有帮助,也更有助于在自己的职业发展中处于有利地位,无限互联Java培训专家今天就为大家总结Java程序员入门时需要掌握的基础要点:掌握静态方法和属性静态方法和属性用于描述某…

实验人员考评指标_了解实验指标

实验人员考评指标In the first part of my series on experimental design Thinking About Experimental Design, we covered the foundations of an experiment: the goals, the conditions, and the metrics. In this post, we will move away from the initial experimental…

leetcode 188. 买卖股票的最佳时机 IV(dp)

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票&#xf…

kotlin编写后台_在Kotlin编写图书馆的提示

kotlin编写后台by Adam Arold亚当阿罗德(Adam Arold) 在Kotlin编写图书馆的提示 (Tips for Writing a Library in Kotlin) Writing a library in Kotlin seems easy but it can get tricky if you want to support multiple platforms. In this article we’ll explore ways f…

1.Swift教程翻译系列——关于Swift

英文版PDF下载地址http://download.csdn.net/detail/tsingheng/7480427 我本来是做JAVA的。可是有一颗折腾的心,苹果公布Swift以后就下载了苹果的开发文档。啃了几天。朦朦胧胧的看了个几乎相同,想静下心看能不能整个翻译出来。我英语一般般,…

核心技术java基础_JAVA核心技术I---JAVA基础知识(集合set)

一:集合了解(一)确定性,互异性,无序性确定性:对任意对象都能判定其是否属于某一个集合互异性:集合内每个元素都是无差异的,注意是内容差异无序性:集合内的顺序无关(二)集合接口HashSet&#xff…

nba数据库统计_NBA板块的价值-从统计学上讲

nba数据库统计The idea is not to block every shot. The idea is to make your opponent believe that you might block every shot. — Bill Russel这个想法不是要阻止每一个镜头。 这个想法是让你的对手相信你可能会阻挡每一个投篮。 —比尔罗素 The block in basketball ha…

leetcode 330. 按要求补齐数组(贪心算法)

给定一个已排序的正整数数组 nums,和一个正整数 n 。从 [1, n] 区间内选取任意个数字补充到 nums 中,使得 [1, n] 区间内的任何数字都可以用 nums 中某几个数字的和来表示。请输出满足上述要求的最少需要补充的数字个数。 示例 1: 输入: nums [1,3], …

【炼数成金 NOSQL引航 三】 Redis使用场景与案例分析

验证redis的主从复制,将实验过程抓图 复制配置文件 更改slave的端口 和相关master配置 主从复制测试 研究在OAuth中的“一次数”nonce有什么用途?怎样使用?以此熟悉OAuth的全流程 nonce ,一个随机的混淆字符串,仅仅被…

SQL Server需要监控哪些计数器 ---指尖流淌

http://www.cnblogs.com/zhijianliutang/p/4174697.html转载于:https://www.cnblogs.com/zengkefu/p/7044095.html

akka 简介_Akka HTTP路由简介

akka 简介by Miguel Lopez由Miguel Lopez Akka HTTP路由简介 (An introduction to Akka HTTP routing) Akka HTTP’s routing DSL might seem complicated at first, but once you get the hang of it you’ll see how powerful it is.Akka HTTP的路由DSL乍一看似乎很复杂&…