西雅图治安_数据科学家对西雅图住宿业务的分析

西雅图治安

介绍 (Introduction)

Airbnb provides an online platform for hosts to accommodate guests with short-term lodging. Guests can search for lodging using filters such as lodging type, dates, location, and price, and can search for specific types of homes, such as bed and breakfasts, unique homes, and vacation homes.

Airbnb为房东提供了一个在线平台,可以为短期住宿的客人提供住宿。 访客可以使用诸如住宿类型,日期,位置和价格之类的过滤器搜索住宿,还可以搜索特定类型的房屋,例如住宿加早餐旅馆,独特房屋和度假屋。

Image for post

By reviewing the 2016 Seattle Airbnb Open Data, I will explore some interesting questions related to the lodging availability, pricing, and reviews. in addition I will try to predict the price of home listings based on the descriptive and non descriptive features.

通过回顾2016 Seattle Airbnb开放数据 ,我将探索一些与住宿可用性,价格和评论有关的有趣问题。 此外,我将尝试根据描述性和非描述性功能预测房屋清单的价格。

While analyzing the data I found that 63% of the listings are one-bedroom property, 42% accommodates 2 guests, 37% has a strict cancelation policy and 30% has a flexible cancelation policy. Capitol Hill and Ballard are the most popular neighborhoods in the listings.

在分析数据时,我发现63%的房源为一居室物业,42%的客房可容纳2位客人,37%的房屋实行严格的取消政策,30%的房屋实行灵活的取消政策。 国会山和巴拉德(Ballard)是清单中最受欢迎的街区。

一年中最繁忙的时间是西雅图? 价格上涨多少? (What are the busiest times of the year to visit Seattle? By how much do prices spike?)

Summer season is more expensive among the year, June July and August are showing the three highest average price per home listing than the other months. The price keeps going from January (122 average) and reached the peak on July (152 average), costing on average over 23.7% than January.

一年中的夏季价格更高,6月,7月和8月是每个房屋挂牌价格最高的三个月。 价格从1月份开始(平ASP格为122),并在7月份达到峰值(平ASP格为152),比1月份平ASP格高出23.7%。

Image for post

When I observed the rate of change of average price of lodging listings for each month, I discovered that the biggest rate of change occurred in June and the lowest in September. The first 7 months of the year also experienced a positive percentage rate of change and then subsequently August, September, October and November experienced a negative rate of change and the rate of change becomes positive again in December. This shows that there is a significant dip for around 4 months in the fall until December.

当我观察到每个月房租平ASP格的变化率时,我发现最大的变化率发生在6月 ,而最低的变化发生在9月。 一年的前七个月也经历了正百分比变化率,然后随后的八月,九月,十月和十一月经历了负变化率,并且变化率在12月再次变为正。 这表明秋季直到12月的4个月左右都有明显的下降。

Image for post
Image for post

By analyzing the reviews data, I found that the number of home listings have been exponentially increased from 2009 to 2015 and were directly correlated with the number of visitors.

通过分析评论数据,我发现从2009年到2015年 ,房屋列表的数量呈指数增长,并且与访客数量直接相关。

西雅图最受欢迎的Airbnb房源是什么? (What is the most popular Seattle neighborhood for Airbnb listings?)

By analyzing the listings data, I found that Capitol Hill and Ballard are the most popular neighborhoods in the Seattle listings, the below bar chart shows that Capitol Hill has 10.31 % Seattle listings, followed by Ballard with 6.26% of the listings.

通过分析清单数据,我发现Capitol Hill和Ballard是西雅图清单中最受欢迎的社区,下面的条形图显示Capitol Hill拥有10.31%西雅图清单,其次是Ballard,占6.26%。

Image for post

我们可以预测西雅图Airbnb房源的价格吗? 哪些方面与价格有很好的关联? (Can we predict a price of Seattle Airbnb listings? What aspects correlate well to price?)

It could be possible to predict the price of Seattle Airbnb listings, however its not as straight forward as it seems to be. For modeling of price prediction, I tried three algorithms, ‘Linear Regression’, ‘Random Forest Regressor’, and ‘Gradient Boosting Regressor’.

可以预测西雅图Airbnb房源的价格,但是它并不像看起来那样简单。 为了对价格预测建模,我尝试了三种算法:“线性回归”,“随机森林回归”和“梯度提升回归”。

Compared to other two models, Linear Regression achieved the best result this time where it gave an accuracy of 56% on the training set and 58% on our test set. This is due to the lack of historical data and the data requiring a huge amount of transformation to be more accurate.

与其他两个模型相比,线性回归这次获得了最佳结果, 其训练集的准确性为56%,测试集的准确性为58%。 这是由于缺乏历史数据,并且数据需要大量转换才能更准确。

Image for post
Image for post
Image for post

Further analysis, I manage to find some factors that cloud influence the price of a listing in order of importance are:

进一步分析后,我设法找到一些因素会影响重要性,这些因素会影响上市价格:

· Number of bedrooms

·卧室数量

· Number of accommodates

·容纳人数

· Number of Bathrooms

·浴室数量

· Room Type

· 房型

· Listing description

·清单说明

· Listing Neighborhood

·列出邻居

Image for post

结论 (Conclusion)

In this article, I tried to analyze the 2016 Airbnb Seattle data in order to answer the below questions:

在本文中,我试图分析2016年Airbnb Seattle数据,以回答以下问题:

1. What are the busiest times of the year to visit Seattle? By how much do prices spike?

1.一年中最繁忙的时间是西雅图? 价格上涨多少?

2. Is there a general upward trend of both new Airbnb listings and total Airbnb visitors to Seattle?

2.新的Airbnb房源和西雅图的Airbnb访客总数是否都有总体上升趋势?

3. What is the most populate Seattle neighborhood for Airbnb listings?

3. Airbnb房源在西雅图人口最多的地区是什么?

4. Can we predict a price of Seattle Airbnb listings? What aspects correlate well to price?

4.我们可以预测西雅图Airbnb房源的价格吗? 哪些方面与价格有很好的关联?

To see more about this analysis, see the link to my Github available here

要了解有关此分析的更多信息,请参见此处的我的Github链接。

翻译自: https://medium.com/analytics-vidhya/airbnb-seattle-homes-fa73adb2a477

西雅图治安

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【贪心】买卖股票的最佳时机含手续费

/** 贪心:每次选取更低的价格买入,遇到高于买入的价格就出售(此时不一定是最大收益)。* 使用buy表示买入股票的价格和手续费的和。遍历数组,如果后面的股票价格加上手续费* 小于buy,说明有更低的买入价格更新buy。如…

排序算法Java代码实现(二)—— 冒泡排序

本篇内容: 冒泡排序冒泡排序 算法思想: 冒泡排序的原理是:从左到右,相邻元素进行比较。 每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。 代码实现: /*** */ packag…

创意产品 分析_使用联合分析来发展创意

创意产品 分析Advertising finds itself in a tenacious spot these days serving two masters: creativity and data.如今,广告业处于一个顽强的位置,服务于两个大师:创造力和数据。 On the one hand, it values creativity; and it’s not…

vue.js 安装

写 一个小小的安装步骤 踩坑过来的 点击.然后安装cnpm.再接着使用文章说明继续安装 # 全局安装 vue-cli $ cnpm install --global vue-cli # 创建一个基于 webpack 模板的新项目 $ vue init webpack my-project这时候一路空格 选项.当遇到第一个让你敲 Y/N 的时候 选择Y …

pandas之表格样式

在juoyter notebook中直接通过df输出DataFrame时&#xff0c;显示的样式为表格样式&#xff0c;通过sytle可对表格的样式做一些定制&#xff0c;类似excel的条件格式。 df pd.DataFrame(np.random.rand(5,4),columns[A,B,C,D]) s df.style print(s,type(s)) #<pandas.io.f…

多层感知机 深度神经网络_使用深度神经网络和合同感知损失的能源产量预测...

多层感知机 深度神经网络in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong.与许忠传&#xff0c;林敏涛和华佳勇合作。 1. Introduction1.简介 Since the early 1990s, several countries, mostly in the European Union and North America, had sta…

蓝牙调试工具如何使用_使用此有价值的工具改进您的蓝牙项目:第2部分!

蓝牙调试工具如何使用This post is originally from www.jaredwolff.com. 这篇文章最初来自www.jaredwolff.com。 This is Part 2 of configuring your own Bluetooth Low Energy Service using a Nordic NRF52 series processor. If you haven’t seen Part 1 go back and ch…

使用Matplotlib Numpy Pandas构想泰坦尼克号高潮

Did you know, a novel predicted the Titanic sinking 14 years previously to the actual disaster???您知道吗&#xff0c;一本小说预言泰坦尼克号在14年前沉没到了真正的灾难中&#xff1f;&#xff1f;&#xff1f; In 1898 (14 years before the Titanic sank), Amer…

pca数学推导_PCA背后的统计和数学概念

pca数学推导As I promised in the previous article, Principal Component Analysis (PCA) with Scikit-learn, today, I’ll discuss the mathematics behind the principal component analysis by manually executing the algorithm using the powerful numpy and pandas lib…

红黑树分析

红黑树的性质&#xff1a; 性质1&#xff1a;每个节点要么是黑色&#xff0c;要么是红色。 性质2&#xff1a;根节点是黑色。性质3&#xff1a;每个叶子节点&#xff08;NIL&#xff09;是黑色。性质4&#xff1a;每个红色节点的两个子节点一定都是黑色。不能有两个红色节点相…

overlay 如何实现跨主机通信?- 每天5分钟玩转 Docker 容器技术(52)

上一节我们在 host1 中运行了容器 bbox1&#xff0c;今天将详细讨论 overlay 网络跨主机通信的原理。 在 host2 中运行容器 bbox2&#xff1a; bbox2 IP 为 10.0.0.3&#xff0c;可以直接 ping bbox1&#xff1a; 可见 overlay 网络中的容器可以直接通信&#xff0c;同时 docke…

Python:实现图片裁剪的两种方式——Pillow和OpenCV

原文&#xff1a;https://blog.csdn.net/hfutdog/article/details/82351549 在这篇文章里我们聊一下Python实现图片裁剪的两种方式&#xff0c;一种利用了Pillow&#xff0c;还有一种利用了OpenCV。两种方式都需要简单的几行代码&#xff0c;这可能也就是现在Python那么流行的原…

鼠标移动到ul图片会摆动_我们可以从摆动时序分析中学到的三件事

鼠标移动到ul图片会摆动An opportunity for a new kind of analysis of Major League Baseball data may be upon us soon. Here’s how we can prepare.不久之后&#xff0c;我们将有机会对美国职棒大联盟数据进行新的分析。 这是我们准备的方法。 It is tempting to think t…

回到网易后开源APM技术选型与实战

篇幅一&#xff1a;APM基础篇\\1、什么是APM?\\APM&#xff0c;全称&#xff1a;Application Performance Management &#xff0c;目前市面的系统基本都是参考Google的Dapper&#xff08;大规模分布式系统的跟踪系统&#xff09;来做的&#xff0c;翻译传送门《google的Dappe…

如何选择优化算法遗传算法_用遗传算法优化垃圾收集策略

如何选择优化算法遗传算法Genetic Algorithms are a family of optimisation techniques that loosely resemble evolutionary processes in nature. It may be a crude analogy, but if you squint your eyes, Darwin’s Natural Selection does roughly resemble an optimisa…

PullToRefreshListView中嵌套ViewPager滑动冲突的解决

PullToRefreshListView中嵌套ViewPager滑动冲突的解决 最近恰好遇到PullToRefreshListView中需要嵌套ViewPager的情况,ViewPager 作为头部添加到ListView中&#xff0c;发先ViewPager在滑动过程中流畅性太差几乎很难左右滑动。在网上也看了很多大神的介绍&#xff0c;看了ViewP…

神经网络 卷积神经网络_如何愚弄神经网络?

神经网络 卷积神经网络Imagine you’re in the year 2050 and you’re on your way to work in a self-driving car (probably). Suddenly, you realize your car is cruising at 100KMPH on a busy road after passing through a cross lane and you don’t know why.想象一下…

数据特征分析-分布分析

分布分析用于研究数据的分布特征&#xff0c;常用分析方法&#xff1a; 1、极差 2、频率分布 3、分组组距及组数 df pd.DataFrame({编码:[001,002,003,004,005,006,007,008,009,010,011,012,013,014,015],\小区:[A村,B村,C村,D村,E村,A村,B村,C村,D村,E村,A村,B村,C村,D村,E村…

如何在Pandas中使用Excel文件

From what I have seen so far, CSV seems to be the most popular format to store data among data scientists. And that’s understandable, it gets the job done and it’s a quite simple format; in Python, even without any library, one can build a simple CSV par…

数据特征分析-对比分析

对比分析是对两个互相联系的指标进行比较。 绝对数比较(相减)&#xff1a;指标在量级上不能差别过大&#xff0c;常用折线图、柱状图 相对数比较(相除)&#xff1a;结构分析、比例分析、空间比较分析、动态对比分析 df pd.DataFrame(np.random.rand(30,2)*1000,columns[A_sale…