分节符缩写p_p值的缩写是什么?

分节符缩写p

p是概率吗? (Is p for probability?)

Technically, p-value stands for probability value, but since all of statistics is all about dealing with probabilistic decision-making, that’s probably the least useful name we could give it.

从技术上讲, p值代表概率值 ,但是由于所有统计数据都涉及概率决策,因此 ,这可能是我们可以给它提供的最不实用的名称。

Instead, here are some more colorful candidate names for your amusement.

相反,这里有一些更有趣的候选名称供您娱乐。

Image for post

Painful value: They make you calculate it in class without explaining it to you properly; no wonder your brain is hurting. Honorable submissions in this category also include puzzling value, perplexing value, and punishing value.

痛苦的价值:他们使您无法在课堂上正确地进行计算; 难怪你的大脑受伤了。 此类别中的荣誉提交还包括令人困惑的价值困惑的价值惩罚性的价值

Pesky value / problematic value: Statisticians are so tired of seeing ignoramuses abuse the p-value that some of them want to see it abolished. They wish they could shake people, yelling, “It’s a tool for personal decision-making, not that other thing you think it is!”

讨厌的价值/有问题的价值:统计学家对看到无用的滥用p值感到厌倦,以致于有些人希望看到 p值被废除 。 他们希望他们能打动人们,大喊:“这是个人决策的工具,而不是您认为的其他东西!”

Persuasive value: As I’ll explain in a moment, trying to use a p-value to persuade someone is a dangerous bet that your victim is more ignorant than you are. If you’re going to appeal to p-values to spice up your message, may I recommend rewriting all your arguments in Latin while you’re at it?

有说服力的价值:正如我稍后会解释的那样,尝试使用p值说服某人是一个危险的赌注,认为您的受害者比您更无知。 如果您打算使用p值来增加信息的趣味性,我是否建议您在使用拉丁语时重写所有参数?

Publishable value: Speaking of ways to abuse the p-value, if you’re one of those “scientists” who feels no remorse torturing (“p-hacking”) your data until it confesses the kind of p-value you think will impress reviewers of an academic journal, you’re part of the problem and not the solution.

可发布的价值:说到滥用p值的方式,如果您是那些不会scientists悔折磨(“ p hacking”)数据直到承认自己认为会令人印象深刻的p值的“ 科学家 ”之一,学术期刊的审稿人,您是问题的一部分,而不是解决方案。

Pay value: If you think academia is the only place where your salary depends on your ability to cook up good-lookin’ p-values, think again!

薪水价值:如果您认为学术界是薪水取决于您制定好看的p值的能力的唯一地方,请再考虑一遍!

Punchline value: Classical statistical inference boils down to asking “Does the evidence we collected make the null hypothesis look ridiculous?” The p-value is the punchline, summarizing the answer to this big testing question in one little number.

关键点价值:经典的统计推断归结为: “我们收集的证据是否使原假设变得荒谬?” p值是重点,将这个大测试问题的答案归纳为一个小数目。

Plausibility value: The higher the p-value, the more plausible your evidence looks in a universe where we’re not totally nuts to stick to our default action. Notice that this is about the plausibility of your evidence in a particular kind of world… NOT the plausibility of that world itself!

合理性值: p值越高,您的证据在宇宙中的可信度就越高,在该宇宙中我们并非完全不愿意采取默认行动 。 请注意,这是关于您的证据在特定世界中的合理性……而不是该世界本身的合理性!

Passivity value: The higher your p-value, the less reason you have to change your mind. Keep doing whatever you passively planned to do. To understand why, read on. (But bear in mind that a lack of evidence is not the same thing as evidence of a lack. A silent smoke alarm doesn’t always mean there’s no fire.)

被动值: p值越高,改变主意的原因就越少。 继续做您打算做的事。 要了解原因,请继续阅读。 (但是请记住, 缺乏证据是不一样的东西缺乏证据 。一个无声的烟雾报警器并不总是意味着没有火灾。)

演示地址

If you prefer videos, here’s part 1: What is a p-value? It might make you think p might be short for “puppy”…
如果您喜欢视频,请参见第1部分:什么是p值? 它可能使您认为p可能是“ puppy”的缩写。

P是打Kong! (P is for Punchline!)

Remember how we boiled statistical inference down to one sentence? It was:

还记得我们如何将统计推断简化为一个句子吗? 它是:

Does the evidence we collected make our null hypothesis look ridiculous?

我们收集的证据是否使我们的零假设看起来很荒谬?

The p-value is the punchline to that question. It summarizes the answer in one little number. The lower the p-value, the more ridiculous the null hypothesis looks!

p值是该问题的重点。 它总结了几个答案。 p值越低,原假设看起来就越荒谬!

So, how do we turn the answer into a yes or a no? We simply set a threshold in advance to indicate what’s ridiculous enough to change our minds. The fancy name for that threshold is the significance level. If the p-value is below it, change your mind. If not, keep doing what you were happy to do by default.

那么,我们如何将答案变成是或否? 我们只是简单地预先设置一个阈值,以表明什么足以改变我们的想法的荒谬。 该阈值的奇特名称是显着性水平 。 如果p值低于该值,请改变主意。 如果没有,默认情况下继续做自己喜欢做的​​事情。

*是*与*做* (What it *is* versus what it *does*)

A wonderful thing about p-values is that they’re easy and relatively safe to use… if you picked the right test for your null hypothesis and assumptions. (That’s a big if!) But don’t forget that what you’ve just learned is what they do, not what they are.

关于p值的一个奇妙之处在于,它们易于使用且相对安全...如果您为无效假设和假设选择了正确的检验,则可以使用。 (如果这么大的话!)但是请不要忘记,您刚刚学到的是他们在做什么 ,而不是他们 什么。

Don’t make the mistake of trying to understand what they are in a pithy one-liner.

不要试图去理解它们在一个简单的单行代码中的错误。

What they are is something weird: probability statements about samples in a specific imaginary universe. They’re most definitely not that straight-forward thing you want them to be; they weren’t designed to be intuitive to interpret or pithy to describe. They’re made for reading off the output of a hypothesis test.

他们都是奇怪的事情:有关特定假想的宇宙样品的概率声明。 它们绝对不是您希望它们成为的简单明了的东西; 他们的目的不是要直观地解释或难以描述。 它们用于读取假设检验的输出。

So, what are they? To see that, you’ll need to understand how we calculate them. I’ve written about that in my other articles, e.g. here, so I’ll stick to a summary here.

什么 要看到这一点,您需要了解我们如何计算它们。 我已经在其他文章(例如here)中对此进行了介绍,因此在这里我将坚持摘要。

简介:您如何*获得* p值? (Summary: How do you *get* a p-value?)

Calculating a p-value is a five-step process.

计算p值是一个五步过程。

  1. Choose the default action.

    选择默认操作 。

  2. State the null hypothesis.

    陈述原假设 。

  3. State the assumptions about how the world described by that null hypothesis works.

    陈述有关该原假设所描述的世界如何工作的假设。
  4. Make a model of that world (using equations or simulation) — this is the bulk of the work for statisticians.

    创建该世界的模型(使用方程式或模拟)-这是统计学家的主要工作。
  5. Find the probability that this world coughs up evidence at least as bad as we’re seeing in our real-life data.

    找到这个世界咳嗽证据的可能性至少与我们在现实生活数据中看到的一样糟糕。

演示地址

Part 2: How do you get a p-value?
第2部分:如何获得p值?

摘要:如何*使用* p值? (Summary: How do you *use* a p-value?)

  1. Compare it against the significance level.

    将其与显着性水平进行比较。

  2. Change your mind if the p-value is below the significance level. Otherwise, just keep doing what you were going to do if you never analyzed any data.

    如果p值低于显着性水平,请改变主意。 否则,只要您从未分析过任何数据,就继续做您打算做的事情。

Image for post
xkcd is a knockoff. The lack of humor won’t tip anyone off. )xkcd是仿制品。缺乏幽默感不会使任何人失望。)

演示地址

Part 3: How do you use a p-value?
第3部分:如何使用p值?

摘要:简短说明 (Summary: Short explanation)

A p-value asks, “If I’m living in a world where I should be taking my default action, how unsurprising is my evidence?” The higher the p-value, the less ridiculous I’ll feel about persisting with my planned action. If the p-value is low enough, I’ll change my mind and do something else.

一个p值询问: “如果我生活在应该采取 默认行动 的世界中 ,我的证据有多令人惊讶?” P值越高,我坚持执行计划中的动作就越可笑。 如果p值足够低,我会改变主意并做其他事情。

Polemical value / polarizing value: If you want to learn about the p-value controversy and read my take on all the emotions the p-value causes, check out the next article in this series: Why are p-values like needles?

政治价值/极化价值: 如果您想了解 p值的争议 并阅读我对p值引起的所有情绪的看法,请查看本系列的下一篇文章: 为什么p值像针一样?

演示地址

Part 4: Check your understanding with this summary!
第4部分:通过此摘要检查您的理解!

使用p值的最安全方法 (The safest way to use a p-value)

In order to interpret a p-value, you must know every detail about the assumptions and null hypothesis. If that info’s not available to you, the only valid interpretation of a low p-value is: “Someone was surprised by something.” Let’s all meditate on how little that tells you if you don’t know much about the someone or the something in question.

为了解释p值,您必须了解有关假设和原假设的每个细节。 如果您无法获得该信息,则唯一有效的低p值解释是: “某人对某事感到惊讶。” 让我们一起思考一下,如果您对某人某事不了解太多,那么该信息将告诉您。

Interpret a low p-value as: “Someone was surprised by something.”

将低p值解释为:“某人对某事感到惊讶。”

Trying to use a p-value to persuade someone is a dangerous bet that your victim is more ignorant than you are. Those who understand what it is might not appreciate your attempt at insulting their intelligence.

试图使用p值说服某人是危险的赌注,即您的受害者比您更无知。 那些了解这是什么的人可能不会欣赏您侮辱他们的智力的尝试。

谢谢阅读! 喜欢作者吗? (Thanks for reading! Liked the author?)

If you’re keen to read more of my writing, most of the links in this article take you to my other musings. Can’t choose? Try this one:

如果您希望我的作品,那么本文中的大多数链接都将带您进入我的其他想法。 无法选择? 试试这个:

翻译自: https://towardsdatascience.com/what-is-p-value-short-for-no-seriously-c548200660a

分节符缩写p

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391337.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[测试题]打地鼠

Description 小明听说打地鼠是一件很好玩的游戏,于是他也开始打地鼠。地鼠只有一只,而且一共有N个洞,编号为1到N排成一排,两边是墙壁,小明当然不可能百分百打到,因为他不知道地鼠在哪个洞。小明只能在白天打…

重学TCP协议(2) TCP 报文首部

1. TCP 报文首部 1.1 源端口和目标端口 每个TCP段都包含源端和目的端的端口号,用于寻找发端和收端应用进程。这两个值加上IP首部中的源端IP地址和目的端IP地址唯一确定一个TCP连接 端口号分类 熟知端口号(well-known port)已登记的端口&am…

机器学习 预测模型_使用机器学习模型预测心力衰竭的生存时间-第一部分

机器学习 预测模型数据科学 , 机器学习 (Data Science, Machine Learning) 前言 (Preface) Cardiovascular diseases are diseases of the heart and blood vessels and they typically include heart attacks, strokes, and heart failures [1]. According to the …

重学TCP协议(3) 端口号及MTU、MSS

1. 端口相关的命令 1.1 查看端口是否打开 使用 nc 和 telnet 这两个命令可以非常方便的查看到对方端口是否打开或者网络是否可达。如果对端端口没有打开,使用 telnet 和 nc 命令会出现 “Connection refused” 错误 1.2 查看监听端口的进程 使用 netstat sudo …

Diffie Hellman密钥交换

In short, the Diffie Hellman is a widely used technique for securely sending a symmetric encryption key to another party. Before proceeding, let’s discuss why we’d want to use something like the Diffie Hellman in the first place. When transmitting data o…

如何通过建造餐厅来了解Scala差异

I understand that type variance is not fundamental to writing Scala code. Its been more or less a year since Ive been using Scala for my day-to-day job, and honestly, Ive never had to worry much about it. 我了解类型差异并不是编写Scala代码的基础。 自从我在日…

组织在召唤:如何免费获取一个js.org的二级域名

之前我是使用wangduanduan.github.io作为我的博客地址,后来觉得麻烦,有把博客关了。最近有想去折腾折腾。先看效果:wdd.js.org 如果你不了解js.org可以看看我的这篇文章:一个值得所有前端开发者关注的网站js.org 前提 已经有了github pages的…

linkedin爬虫_您应该在LinkedIn上关注的8个人

linkedin爬虫Finding great mentors are hard to come by these days. With so much information and so many opinions flooding the internet, finding an authority in a specific field can be quite tough.这些天很难找到优秀的导师。 互联网上充斥着如此众多的信息和众多…

重学TCP协议(4) 三次握手

1. 三次握手 请求端(通常称为客户)发送一个 S Y N段指明客户打算连接的服务器的端口,以及初始序号。这个S Y N段为报文段1。服务器发回包含服务器的初始序号的 S Y N报文段(报文段2)作为应答。同时,将确认序…

java温故笔记(二)java的数组HashMap、ConcurrentHashMap、ArrayList、LinkedList

为什么80%的码农都做不了架构师?>>> HashMap 摘要 HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例…

前置交换机数据交换_我们的数据科学交换所

前置交换机数据交换The DNC Data Science team builds and manages dozens of models that support a broad range of campaign activities. Campaigns rely on these model scores to optimize contactability, volunteer recruitment, get-out-the-vote, and many other piec…

在Centos中安装mysql

下载mysql这里是通过安装Yum源rpm包的方式安装,所以第一步是先下载rpm包 1.打开Mysql官网 https://www.mysql.com/, 点击如图选中的按钮 点击如图框选的按钮 把页面拉倒最下面,选择对应版本下载,博主这里用的是CentOS7 下载完成后上传到服务器,由于是yum源的安装包,所以…

Docker 入门(1)虚拟化和容器

1 虚拟化 虚拟化是为一些组件(例如虚拟应用、服务器、存储和网络)创建基于软件的(或虚拟)表现形式的过程。它是降低所有规模企业的 IT 开销,同时提高其效率和敏捷性的最有效方式。 1.1 虚拟化用于程序跨平台兼容 要…

量子相干与量子纠缠_量子分类

量子相干与量子纠缠My goal here was to build a quantum deep neural network for classification tasks, but all the effort involved in calculating errors, updating weights, training a model, and so forth turned out to be completely unnecessary. The above circu…

Python -- xlrd,xlwt,xlutils 读写同一个Excel

最近开始学习python,想做做简单的自动化测试,需要读写excel,然后就找到了xlrd来读取Excel文件,使用xlwt来生成Excel文件(可以控制Excel中单元格的格式),需要注意的是,用xlrd读取excel是不能对其进行操作的&…

知识力量_网络分析的力量

知识力量The most common way to store data is in what we call relational form. Most systems get analyzed as collections of independent data points. It looks something like this:存储数据的最常见方式是我们所谓的关系形式。 大多数系统作为独立数据点的集合进行分析…

SCCM PXE客户端无法加载DP(分发点)映像

上一篇文章我们讲到了一个比较典型的PXE客户端无法找到操作系统映像的故障,今天再和大家一起分享一个关于 PXE客户端无法加载分发点映像的问题。具体的报错截图如下:从报错中我们可以看到,PXE客户端已经成功的找到了SCCM服务器,并…

Docker 入门(2)技术实现和核心组成

1. Docker 的技术实现 Docker 的实现,主要归结于三大技术: 命名空间 ( Namespaces )控制组 ( Control Groups )联合文件系统 ( Union File System ) 1.1 Namespace 命名空间可以有效地帮助Docker分离进程树、网络接口、挂载点以及进程间通信等资源。L…

marlin 三角洲_带火花的三角洲湖:什么和为什么?

marlin 三角洲Let me start by introducing two problems that I have dealt time and again with my experience with Apache Spark:首先,我介绍一下我在Apache Spark上的经历反复解决的两个问题: Data “overwrite” on the same path causing data l…

eda分析_EDA理论指南

eda分析Most data analysis problems start with understanding the data. It is the most crucial and complicated step. This step also affects the further decisions that we make in a predictive modeling problem, one of which is what algorithm we are going to ch…