linkedin爬虫_您应该在LinkedIn上关注的8个人

linkedin爬虫

Finding great mentors are hard to come by these days. With so much information and so many opinions flooding the internet, finding an authority in a specific field can be quite tough.

这些天很难找到优秀的导师。 互联网上充斥着如此众多的信息和众多见解,因此在特定领域寻找权威可能非常困难。

This feat does not devalue the importance of finding mentors in different stages and areas of our lives. Mentorship has long been considered the most effective way to learn and cut your learning curve in half. Heck, there’s even a Bible scripture on it – Proverbs 19:20-NLTGet all the advice and instruction you can, so you will be wise the rest of your life”.

这一壮举并没有降低在我们生活的不同阶段和领域寻找导师的重要性。 长期以来,导师制一直是学习和将学习曲线减少一半的最有效方法。 哎呀,甚至还有一部圣经经文– 箴言19:20-NLT尽一切可能的建议和指示,这样一生便会很明智 ”。

“If I have seen further it is by standing on the shoulders of Giants” – Isaac Newton

“如果我能进一步看到,那就是站在巨人的肩膀上” –艾萨克·牛顿

With that being said, I thought it necessary to curate a list of effective Data Science professionals that we should all be following, specifically on LinkedIn.

话虽这么说,我认为有必要整理一份我们都应该关注的有效数据科学专业人员的名单,尤其是在LinkedIn上。

Coming up with this list was very difficult and there were so many names I could have added, such as Dat Tran, Kevin Tran, and Steve Nouri to name a few. But I thought “Nah” these names come up so frequently — people should know and be following them by now. I wanted new blood, names that I don’t see thrown about as much but are doing amazing things for the community.

列出此列表非常困难,我可以添加太多名称,例如Dat Tran , Kevin Tran和Steve Nouri等等。 但是我认为这些名字经常出现“ Nah”(不),人们现在应该知道并关注它们。 我想要新的血液,虽然我认为名字很少,但是正在为社区做着很棒的事情。

Note: I must also consider that I do not know the whole population of Data Scientist doing amazing work on LinkedIn. If you wish, feel free to comment some names and add their LinkedIn profiles so that we can give them a follow.

注意 :我还必须考虑,我不知道整个数据科学家在LinkedIn上所做的出色工作。 如果您愿意,请随时评论一些名称并添加其LinkedIn个人资料,以便我们为他们提供关注。

#1 — Abhishek Thakur (#1 — Abhishek Thakur)

He is the world’s first 4x Kaggle Grandmaster, an Author of one of the most exciting Machine Learning books this year, a Youtuber and Chief Data Scientist at Boost.AI.

他是全球首位4x Kaggle Grandmaster,是今年最激动人心的机器学习书籍之一的作者,还是Boost.AI的Youtuber和首席数据科学家。

If you follow me on LinkedIn, you probably knew that this was coming since I am constantly sharing his post. I personally take tons of inspiration from Abhishek because of how practical he is — everything is applied. I don’t think I’ve ever seen him share something without giving a real world example that is relatable to.

如果您在LinkedIn上关注我,您可能会知道这是即将到来的,因为我一直在分享他的帖子。 我个人从Abhishek那里汲取了很多灵感,因为他的实践能力强-一切都可以运用。 我认为我从未见过他在没有提供与之相关的真实示例的情况下分享某些东西。

Image for post
Source: 资料来源 : Abhishek Thakur Youtube ChannelAbhishek Thakur Youtube频道

Much of his work is definitely targeted towards people with Machine Learning experience, but of late he has been posting many videos surrounding breaking into Data Science — here are some examples:

他的大部分工作肯定是针对具有机器学习经验的人,但最近他发布了许多有关闯入数据科学的视频-以下是一些示例:

  • How to Become A Data Scientist in 1 Year (Learn from a Real World Example)

    如何在1年内成为一名数据科学家(从真实示例中学习)

  • How do I start My Career In Data Science?

    如何开始我的数据科学职业?

  • My Journey: How I Became The World’s First 4x (and 3x) Grand Master on Kaggle

    我的旅程:我如何成为Kaggle上世界上第一个4x(和3x)大师

Disclaimer: His hair changes a lot but I can verify that it is still him!

免责声明 :他的头发变化很大,但我可以确定它仍然是他!

#2 — Angshuman Ghosh博士(博士学位,MBA,MBE) (#2 — Dr. Angshuman Ghosh (PhD, MBA, MBE))

Dr. Angshuman shares extremely thought provoking, educational and motivational post surrounding Data Science. I often find myself bookmarking useful resources that he post so I can refer back to it at a later data, for example this 47 page book on Maths For Machine Learning.

昂斯曼(Angshuman)博士在数据科学领域分享了令人发指的启发性,教育性和激励性的文章。 我经常发现自己为他发布的有用资源添加了书签,因此我可以在以后的数据中引用它,例如,这本47页的关于“机器学习的数学”的

Image for post

He was the Lead Data Scientist at Target and is now the Senior Manager at Grab, as well as a Visiting Professor at the Indian Institute of Management. I definitely would advise giving Dr. Angshu a follow and interacting with his post.

他曾是Target的首席数据科学家 ,现在是Grab高级经理 ,以及印度管理学院的客座教授。 我绝对建议您给Angshu博士一个关注并与他的帖子互动。

Note: For some weird reason Medium does not make a block when I share the Link to his page. Follow Dr. Angshu on LinkedIn

注意 :由于某些奇怪的原因,当我共享指向他的页面的链接时,Medium没有阻止。 按照医生Angshu上LinkedIn

#3 — 菲利普·沃尔特 (#3 — Phillip Vollet)

Phillip is a Senior Data Engineer and a radical Natural Language Processing evangelist — I mean literally, radical!

Phillip是一位高级数据工程师,也是一位激进的自然语言处理布道者-我的意思是,太激进了!

He also posts very useful content regarding Data Visualization, Deep Learning and Machine Learning, hence making him an all-rounder to some extent, but in general, he’s definitely going to be talking about NLP.

他还发布了关于数据可视化,深度学习和机器学习的非常有用的内容,因此在某种程度上使他成为多面手,但总的来说,他肯定会谈论NLP。

Image for post
Source: 资料来源 : Phillip Vollet LinkedIn ActivityPhillip Vollet LinkedIn活动

Give him a follow…

跟着他...

#4 — 埃里克·韦伯 (#4 — Eric Weber)

I recently started following Eric and since that day it has been non-stop gems on my LinkedIn feed. His post major around advice for Data Professionals, but every so often he will drop a sprinkle of resources that are useful for breaking into the Data field.

我最近开始关注埃里克(Eric),从那天开始,它一直是我的LinkedIn订阅源中的不停宝石。 他的专业主要是为数据专业人员提供建议,但他经常会浪费大量资源,这些资源对于打入数据领域很有用。

Image for post
Source: 资料来源: Eric Weber LinkedIn PostEric Weber LinkedIn Post

Eric works as the Head of Experimentation and a Data Science Leader at Yelp and I’d definitely put him down as one of the first people to follow.

埃里克(Eric)是Yelp 的实验负责人和数据科学负责人 ,我肯定会把他当成最早跟随他的人之一。

#5 — 马丹尼 (#5 — Danny Ma)

I feel as though I draw plenty of similarities to Danny so I can relate to his post. Danny is a self-taught Data Scientist and Machine Learning Engineer without a Science, Technology, Engineering or Maths (STEM) degree, Masters or PhD — He even expands on that to say that he has no certifications and struggled to finish 3 online courses. I’m sure many of us can relate.

我觉得自己与Danny有很多相似之处,因此可以参考他的职位。 Danny是一位自学成才的数据科学家和机器学习工程师,没有科学,技术,工程或数学(STEM)学位,硕士学位或博士学位—他甚至在此基础上进一步扩大,说自己没有认证,并且很难完成3项在线课程。 我敢肯定我们很多人都可以联系。

Image for post
Source: 资料来源 : Danny Ma LinkedIn PostDanny Ma LinkedIn

The way Danny breaks down what it is like to work in the field takes away the fright of the massive salaries being attached to roles. Look, I haven’t cooked a meal since I dropped Food Technology in school, but look how talks about the Data Science diet.

丹尼(Danny)打破在野外工作的感觉的方式消除了与角色相关的巨额薪水的恐惧。 看,自从学校放弃食品技术以来,我还没有煮过饭,但请看如何谈论数据科学饮食。

#6— 凯尔·麦基欧(Kyle McKiou) (#6— Kyle McKiou)

Introducing Kyle is easy — I will just read his headline. I Teach Data Scientist How to Get Jobs, plain and simple. Kyle post when he has something to say and often it’s quite valuable.

介绍Kyle很容易-我会读他的标题。 我教数据科学家如何简单而简单地找到工作。 凯尔(Kyle)在有话要说时发帖,而这通常很有价值。

Image for post
Source: 资料来源 : Kyle McKiou PostKyle McKiou Post

I know… controversial!

我知道……有争议!

There are various ways to connect with Kyle:

与Kyle建立联系的方式有多种:

  • Youtube

    优酷

  • Instagram

    Instagram

But this post is about LinkedIn Veterans!

但是这篇文章是关于领英退伍军人的!

#7 —莱克斯·弗里德曼 (#7 — Lex Fridman)

Lex Fridman is one of a kind, but his posts do remind me that he is truly human — I can prove it because I saw him sweating. He works at MIT doing Research in human-centered AI, Autonomous Vehicles, and Deep Learning.

莱克斯·弗里德曼(Lex Fridman)是其中的一种,但他的帖子确实使我想起他是真正的人-我可以证明这一点,因为我看到他出汗。 他在麻省理工学院工作,从事以人为中心的人工智能,自动驾驶汽车和深度学习的研究。

Ever heard of how Elon Musk manages his time? Well, Elon Musk found enough time (36 minutes to be precise) to sit with the “Russian Hitman” — he said it not me — Oh… I forgot to add, Joe Rogan thought it necessary also.

是否听说过埃隆·马斯克(Elon Musk)如何管理自己的时间? 好吧,埃隆·马斯克(Elon Musk)找到了足够的时间(准确地说是36分钟)和“俄罗斯杀手”坐在一起-他说不是我-哦……我忘了补充,乔·罗根(Joe Rogan)认为也有必要。

Image for post
Lex Fridman PodcastLex Fridman播客

结语 (Wrap Up)

You may be surprised after reading this article but the answer to your question is “YES! There are tons of outstanding Women doing Data Science” and I will be dedicating my next post the 7 women you should be following on LinkedIn — If you’d like to be notified of that post, follow me on Medium.

阅读本文后,您可能会感到惊讶,但问题的答案是“是! 有大量杰出的女性从事数据科学研究”,我将在下一篇文章中奉献您应该在LinkedIn上关注的7位女性-如果您希望收到有关该职位的通知,请在Medium上关注我。

The list I have provided is in no particular order and is most definitely not the only people in the world doing great stuff in the community. As I’ve mentioned earlier, I want to meet more authorities so if you have some that I haven’t named then definitely link them to me!

我提供的列表没有特别的顺序,并且绝对不是世界上唯一在社区中做得很好的人。 正如我前面提到的,我想遇到更多的权威人士,所以如果您有一些我没有命名的权威人士,那么可以肯定地将它们链接到我身上!

Let’s continue the conversation on LinkedIn…

让我们继续在LinkedIn上进行对话…

翻译自: https://towardsdatascience.com/8-folks-you-should-be-following-on-linkedin-75f8fe9e43db

linkedin爬虫

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391321.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重学TCP协议(4) 三次握手

1. 三次握手 请求端(通常称为客户)发送一个 S Y N段指明客户打算连接的服务器的端口,以及初始序号。这个S Y N段为报文段1。服务器发回包含服务器的初始序号的 S Y N报文段(报文段2)作为应答。同时,将确认序…

[设计模式]State模式

《Java与模式》 又称状态对象模式。状态模式是对象的行为模式。GOF95 一个对象的行为取决于一个或者多个动态变化的属性,这样的属性叫做状态。这样的对象叫做有状态的对象(stateful)。 状态模式把一个所研究的对象的行为包装在不同的状态对象…

java温故笔记(二)java的数组HashMap、ConcurrentHashMap、ArrayList、LinkedList

为什么80%的码农都做不了架构师?>>> HashMap 摘要 HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例…

前置交换机数据交换_我们的数据科学交换所

前置交换机数据交换The DNC Data Science team builds and manages dozens of models that support a broad range of campaign activities. Campaigns rely on these model scores to optimize contactability, volunteer recruitment, get-out-the-vote, and many other piec…

aws 弹性三剑客_AWS和弹性:超越用户需求

aws 弹性三剑客I’ll assume that, one way or another, you’re already familiar with many of AWS’s core deployment services. That means you now know about:我假设您已经熟悉许多AWS的核心部署服务。 这意味着您现在知道: • EC2 instances and AMIs (Ama…

leetcode 368. 最大整除子集(dp)

给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足: answer[i] % answer[j] 0 ,或 answer[j] % answer[i] 0 如果存在多个有效解子集&a…

在Centos中安装mysql

下载mysql这里是通过安装Yum源rpm包的方式安装,所以第一步是先下载rpm包 1.打开Mysql官网 https://www.mysql.com/, 点击如图选中的按钮 点击如图框选的按钮 把页面拉倒最下面,选择对应版本下载,博主这里用的是CentOS7 下载完成后上传到服务器,由于是yum源的安装包,所以…

硕士可以跟别的导师做实验吗_如何成为一名导师可以成为双刃剑

硕士可以跟别的导师做实验吗Mentoring is the ability to give advise or train someone, often times, who is less knowledgeable in a particular field. This is pretty much common place in tech companies. There you usually have senior developers who, besides bein…

linux中权限对文件和目录的意义

1.权限对文件的意义: 读:可查看文件的内容 写:可修改文件的内容(但不能删除文件) 执行:可执行文件 2.权限对目录的意义: 读:可以查看目录下的内容,即可以读取该目录下的结…

Docker 入门(1)虚拟化和容器

1 虚拟化 虚拟化是为一些组件(例如虚拟应用、服务器、存储和网络)创建基于软件的(或虚拟)表现形式的过程。它是降低所有规模企业的 IT 开销,同时提高其效率和敏捷性的最有效方式。 1.1 虚拟化用于程序跨平台兼容 要…

量子相干与量子纠缠_量子分类

量子相干与量子纠缠My goal here was to build a quantum deep neural network for classification tasks, but all the effort involved in calculating errors, updating weights, training a model, and so forth turned out to be completely unnecessary. The above circu…

三角函数式的化简

前言 为什么需要化简三角函数式? 一、什么是三角函数式的化简? 二、三角函数式的化简标准是什么? 三、三角函数式化简可能用到的变形: 弦切互化,1的代换,通分约分,配方展开,提取公因…

Python -- xlrd,xlwt,xlutils 读写同一个Excel

最近开始学习python,想做做简单的自动化测试,需要读写excel,然后就找到了xlrd来读取Excel文件,使用xlwt来生成Excel文件(可以控制Excel中单元格的格式),需要注意的是,用xlrd读取excel是不能对其进行操作的&…

计算机工程师分级_这些是每个计算机工程师都应该知道的数字

计算机工程师分级In 2010, Jeff Dean from Google gave a wonderful talk at Stanford that made him quite famous. In it, he discussed a few numbers that are relevant to computing systems. Then Peter Norvig published those numbers for the first time on the inter…

leetcode 377. 组合总和 Ⅳ(dp)

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围。 示例 1: 输入:nums [1,2,3], target 4 输出:7 解释&…

1.4- 定时任务总结之九句箴言

1.4定时任务之九句箴言九句箴言---- 不会九句箴言别做运维1.定时任务规则之前加注释2.使用脚本代替命令行制定定时任务3.定时任务中date命令%的特殊含义定时任务中,%表示回车 -----可以使用\转义4.运行脚本一定要用/bin/sh或sh脚本不必须有x权限5.定时任务中-命令或脚本的输出…

ubuntu 18.04 vi里面方向键变成abcd 处理办法

sudo apt-get remove vim-common sudo apt-get install vim 转载于:https://www.cnblogs.com/testing-BH/p/11506400.html

知识力量_网络分析的力量

知识力量The most common way to store data is in what we call relational form. Most systems get analyzed as collections of independent data points. It looks something like this:存储数据的最常见方式是我们所谓的关系形式。 大多数系统作为独立数据点的集合进行分析…

python里的apply,applymap和map的区别

apply,applymap和map的应用总结:apply 用在dataframe上,用于对row或者column进行计算;applymap 用于dataframe上,是元素级别的操作;map (其实是python自带的)用于series上,是元素级别的操作。如…

验证曲线和学习曲线_如何击败技术学习曲线的怪物

验证曲线和学习曲线Doing what I do for a living, which these days mostly involves creating technology books and courseware, I’m constantly learning new technologies. In a way, my new tech adventures are not much different than the ones most IT pros face, e…