数据结构入门 — 时间复杂度、空间复杂度

前言

数据结构_空间复杂度_时间复杂度讲解_常见复杂度对比

本文介绍数据结构中的时间复杂度和空间复杂度
***文章末尾,博主进行了概要总结,可以直接看总结部分***

博主博客链接:https://blog.csdn.net/m0_74014525
点点关注,后期持续更新系列文章


文章目录

  • 前言
  • 一、算法效率
  • 二、时间复杂度
    • 1. 时间复杂度的定义
    • 2. 大O的渐进表示法
    • 3. 时间复杂度计算举例
  • 三、空间复杂度
    • 1. 空间复杂度的定义
    • 2. 空间复杂度计算举例
  • 四、常见复杂度对比
    • 1. 常见的时间复杂度及其对应的算法
    • 2. 常见复杂度的对比
  • 总结


一、算法效率

算法效率指的是算法在处理数据时所消耗的时间和空间资源的多少。

算法效率通常由时间复杂度空间复杂度来衡量。

时间复杂度: 表示算法在处理数据时所需要的运算次数与数据规模之间的关系。

空间复杂度: 表示算法在处理数据时所需要的存储空间与数据规模之间的关系。

算法效率的好坏直接影响到算法的执行速度和资源利用率,是算法设计时需要考虑的重要因素之一。


二、时间复杂度

1. 时间复杂度的定义

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

举例说明:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){									//外层循环n次for (int j = 0; j < N; ++j){++count;					//内层循环n次//n*n}}for (int k = 0; k < 2 * N; ++k){++count;					//2*N 次}int M = 10;while (M--){++count;					//循环10次}printf("%d\n", count);
}

Func1 执行的基本操作次数 :

F ( N ) = N 2 + 2 ∗ N + 10 F(N)=N^2+2*N+10 F(N)=N2+2N+10
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

使用大O的渐进表示法以后,Func1的时间复杂度为:

O ( N 2 ) O(N^2) O(N2)

N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。


2. 大O的渐进表示法

大O表示法是算法时间复杂度的渐进表示法,表示算法的运行时间在最坏情况下的渐进上限。

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况
需要注意的是,大O表示法只关注算法的渐进时间复杂度,而不关注算法的具体实现细节和常数项。因此,两个算法的时间复杂度可能相同,但它们的实际运行时间可能差别很大,这需要具体问题具体分析。


3. 时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

实例1解析:
上述算法基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)


实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k){++count;}for (int k = 0; k < N; ++k){++count;}printf("%d\n", count);
}

实例2解析:
上述算法基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)


实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

实例3解析:
上述算法基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)


实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例4解析:
上述算法基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)


实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例5解析:
上述算法基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)


实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

实例6解析:
上述算法基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)
ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出的)


实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

实例7解析:
上述算法通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。


实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

实例8解析:
实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)


三、空间复杂度

1. 空间复杂度的定义

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。


2. 空间复杂度计算举例

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end)   		//end{int exchange = 0;           			//exchangefor (size_t i = 1; i < end; ++i)		//i   {if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例1解析:
上面算法里用三个变量,为常数个变量
使用了常数个额外空间,所以空间复杂度为 O(1)


实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

实例2解析:
上面算法使用malloc动态内存函数开辟了N个空间
动态开辟了N个空间,空间复杂度为 O(N)


实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

实例3解析:
上述算法使用了递归
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)


四、常见复杂度对比

1. 常见的时间复杂度及其对应的算法

大O渐进表示法时间复杂度类型算法的执行时间与输入规模关系对应算法
O(1)常数时间复杂度表示算法的执行时间与输入规模无关例如:访问数组元素、哈希表操作等。
O(log n)对数时间复杂度表示算法的执行时间与输入规模的对数相关例如:二分查找、平衡二叉树操作等。
O(n)线性时间复杂度表示算法的执行时间与输入规模成线性关系例如:线性查找、顺序遍历数组等。
O(n log n)线性对数时间复杂度表示算法的执行时间介于线性和对数之间例如:归并排序、快速排序等。
O(n^2)平方时间复杂度表示算法的执行时间与输入规模的平方相关例如:冒泡排序、选择排序等。
O(n^3)立方时间复杂度表示算法的执行时间与输入规模的立方相关例如:矩阵乘法等。
O(2^n)指数时间复杂度表示算法的执行时间与输入规模的指数相关例如:求解子集、穷举等。

2. 常见复杂度的对比

在这里插入图片描述


总结

时间复杂度和空间复杂度是用来衡量算法性能的两个重要指标。

时间复杂度表示算法的运行时间随着数据规模的增长而增长的趋势,通常用大O表示法来表示。时间复杂度越低,算法的效率越高。时间复杂度和数据规模之间的关系如下:

  • 常数时间:O(1)
  • 对数时间:O(log n)
  • 线性时间:O(n)
  • 线性对数时间:O(n log n)
  • 平方时间:O(n^2)
  • 立方时间:O(n^3)
  • 指数时间:O(2^n)

空间复杂度表示算法所需内存空间增长的趋势,同样用大O表示法来表示。空间复杂度越低,算法所需内存空间越少。空间复杂度和数据规模之间的关系如下:

  • 常数空间:O(1)
  • 线性空间:O(n)
  • 平方空间:O(n^2)

在实际应用中,我们要综合考虑时间复杂度和空间复杂度,找到一个性能和资源占用的平衡点,以实现最优的算法效果。时间复杂度和空间复杂度是用来衡量算法性能的两个重要指标。


如这篇博客对大家有帮助的话,希望 三连 支持 !!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39132.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哈夫曼树(赫夫曼树、最优树)详解

目录 哈夫曼树&#xff08;赫夫曼树、最优树&#xff09;详解 哈夫曼树相关的几个名词 什么是哈夫曼树 构建哈夫曼树的过程 哈弗曼树中结点结构 构建哈弗曼树的算法实现 哈夫曼树&#xff08;赫夫曼树、最优树&#xff09;详解 哈夫曼树相关的几个名词 路径&#xff1a;…

实验三 图像分割与描述

一、实验目的&#xff1a; &#xff08;1&#xff09;进一步掌握图像处理工具Matlab&#xff0c;熟悉基于Matlab的图像处理函数。 &#xff08;2&#xff09;掌握图像分割方法&#xff0c;熟悉常用图像描述方法。 二、实验原理 1.肤色检测 肤色是人类皮肤重要特征之一&#xff…

7.原 型

7.1原型 【例如】 另外- this指向&#xff1a; 构造函数和原型对象中的this都指向实例化的对象 7.2 constructor属性 每个原型对象里面都有个constructor属性( constructor构造函数) 作用&#xff1a;该属性指向该原型对象的构造函数 使用场景: 如果有多个对象的方法&#…

Springboot 实践(4)swagger-ui 测试controller

前文项目操作&#xff0c;完成了项目的创建、数据源的配置以及数据库DAO程序的生成与配置。此文讲解利用swagger-ui界面&#xff0c;测试生成的数据库DAO程序。目前&#xff0c;项目swagger-ui界面如下&#xff1a; 以”用户管理”为例&#xff0c;简单讲述swagger-ui测试数据库…

无涯教程-Perl - s函数

描述 这不是功能。这是正则表达式替换运算符。根据PATTERN中指定的正则表达式,将数据替换为REPLACE。与m //一样,分隔符由s后的第一个字符定义。 语法 以下是此函数的简单语法- s/PATTERN/REPLACE/返回值 如果失败,此函数返回0,如果成功,则返回替换次数。 例 以下是显示…

【Python机器学习】实验10 支持向量机

文章目录 支持向量机实例1 线性可分的支持向量机1.1 数据读取1.2 准备训练数据1.3 实例化线性支持向量机1.4 可视化分析 实例2 核支持向量机2.1 读取数据集2.2 定义高斯核函数2.3 创建非线性的支持向量机2.4 可视化样本类别 实例3 如何选择最优的C和gamma3.1 读取数据3.2 利用数…

Open3D 最小二乘拟合平面(SVD分解法)

目录 一、算法原理二、代码实现三、结果展示1、点云2、拟合结果四、优秀博客本文由CSDN点云侠原创,原文链接。爬虫网站自重。 一、算法原理 本文实现矩阵奇异值分解方法的最小二乘拟合平面。原理如下: 对于得到的 n n

欧拉函数(质因子分解)

思路&#xff1a; (1)欧拉函数&#xff1a;输入n则输出1~n中与n互质的数的个数。 &#xff08;2&#xff09;计算公式&#xff1a; &#xff08;3&#xff09;证明&#xff1a;&#xff08;容斥原理&#xff09;对于n个数&#xff0c;先分别摘除所有被pi整除的数&#xff0c;…

亿信ABI有什么不同,来看最新DEMO演示

为了给用户营造更好的体验环境&#xff0c;提供更丰富、更完善的服务&#xff0c;亿信华辰旗下核心产品亿信ABI DEMO再次上新啦&#xff01;本次亿信ABI DEMO环境在原有基础上焕新升级&#xff0c;带来了全新的主视觉界面、丰富的行业应用和功能演示DEMO&#xff0c;我们一起来…

季度到季度的组件选择

组件&#xff1a;<template><div class"quarter"><div class"input-wrap" id"closeId" mouseover"handler" click.stop"btn" :style"{color:colorItem}"><i class"el-icon-date"&…

【Java】BF算法(串模式匹配算法)

☀️ 什么是BF算法 BF算法&#xff0c;即暴力算法&#xff0c;是普通的模式匹配算法&#xff0c;BF算法的思想就是将目标串S的第一个与模式串T的第一个字符串进行匹配&#xff0c;若相等&#xff0c;则继续比较S的第二个字符和T的第二个字符&#xff1b;若不相等&#xff0c;则…

【计算机视觉|生成对抗】用深度卷积生成对抗网络进行无监督表示学习(DCGAN)

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 链接&#xff1a;[1511.06434] Unsupervised Representation Learning with Deep Conv…

腾讯云CVM服务器竞价实例是什么?和按量计费有什么区别?

腾讯云服务器CVM计费模式分为包年包月、按量计费和竞价实例&#xff0c;什么是竞价实例&#xff1f;竞价实例和按量付费相类似&#xff0c;优势是价格更划算&#xff0c;缺点是云服务器实例有被自动释放风险&#xff0c;腾讯云服务器网来详细说下什么是竞价实例&#xff1f;以及…

NLP——操作步骤讲义与实践链接

数据集与语料 语料是NLP的生命之源&#xff0c;所有NLP问题都是从语料中学到数据分布的规律语料的分类&#xff1a;单语料&#xff0c;平行语料&#xff0c;复杂结构 语料的例子&#xff1a;Penn Treebank, Daily Dialog, WMT-1x翻译数据集&#xff0c;中文闲聊数据集&#xf…

大数据:Numpy基础应用详解

Numpy基础应用 Numpy 是一个开源的 Python 科学计算库&#xff0c;用于快速处理任意维度的数组。Numpy 支持常见的数组和矩阵操作&#xff0c;对于同样的数值计算任务&#xff0c;使用 NumPy 不仅代码要简洁的多&#xff0c;而且 NumPy 的性能远远优于原生 Python&#xff0c;…

mysql-5.5.62-win32安装与使用

1.为啥是这个版本而不是当前最新的8.0&#xff1f; 因为我要用32位。目前mysql支持win32的版本最新只到5.7.33。 首先&#xff0c;到官网MySQL :: MySQL Downloads 然后选 选一个自己喜欢的版本就好。我这里是如标题版本。下载32位的zip。然后回来解压。 完了创建系统环境变…

项目实施方案案例模板-拿来即用

《项目实施方案》实际案例模板&#xff0c;拿来即用&#xff0c;原件可获取。 项目背景 项目目标 项目范围 项目总体计划 项目组织架构 5.1. 项目职责分工 项目风险点 6.1. 项目风险分析 6.2. 项目实施关键点 项目管理规范 7.1. 项目实施约束 7.2. 项目变更冻结 7…

(三) CUDA 硬件实现

一组带有on-chip 共享内存的SIMD多处理器 GPU可以被看作一组多处理器, 每个多处理器使用单一指令&#xff0c;多数据架构(SIMD)【单指令流多数据流】 在任何给定的时钟周期内&#xff0c;多处理器的每个处理器执行同一指令&#xff0c;但操作不同的数据 每个多处理器使用以下…

HASH索引,AVL树,B树,B+树的区别?

1. 什么是 Hash 1.1 Hash 函数 Hash 本身其实是一个函数&#xff0c;又被称为散列函数&#xff0c;它可以大幅提高我们对数据的检索效率。因为它是散列的&#xff0c;所以在存储数据的时候&#xff0c;它也是无序的。 Hash 算法是通过某种确定性的算法(例如MD5&#xff0c;S…

virtualBox桥接模式下openEuler镜像修改IP地址、openEule修改IP地址、openEule设置IP地址

安装好openEuler后,设置远程登入前,必不可少的一步,主机与虚拟机之间的通信要解决,下面给出详细步骤: 第一步:检查虚拟机适配器模式:桥接模式 第二步:登入虚拟机修改IP cd /etc/sysconfig/network-scripts vim ifcfg-enpgs3 没有vim的安装或者用vi代替:sudo dnf …