哈夫曼树(赫夫曼树、最优树)详解

目录

哈夫曼树(赫夫曼树、最优树)详解

哈夫曼树相关的几个名词

什么是哈夫曼树

构建哈夫曼树的过程

哈弗曼树中结点结构

构建哈弗曼树的算法实现


哈夫曼树(赫夫曼树、最优树)详解

哈夫曼树相关的几个名词

路径:在一棵树中,一个结点到另一个结点之间的通路,称为路径。图 1 中,从根结点到结点 a 之间的通路就是一条路径。

路径长度:在一条路径中,每经过一个结点,路径长度都要加 1 。例如在一棵树中,规定根结点所在层数为1层,那么从根结点到第 i 层结点的路径长度为 i - 1 。图 1 中从根结点到结点 c 的路径长度为 3。

结点的权:给每一个结点赋予一个新的数值,被称为这个结点的权。例如,图 1 中结点 a 的权为 7,结点 b 的权为 5。

结点的带权路径长度:指的是从根结点到该结点之间的路径长度与该结点的权的乘积。例如,图 1 中结点 b 的带权路径长度为 2 * 5 = 10 。

树的带权路径长度为树中所有叶子结点的带权路径长度之和。通常记作 “WPL” 。例如图 1 中所示的这颗树的带权路径长度为:

WPL = 7 * 1 + 5 * 2 + 2 * 3 + 4 * 3


图1 哈夫曼树

什么是哈夫曼树

当用 n 个结点(都做叶子结点且都有各自的权值)试图构建一棵树时,如果构建的这棵树的带权路径长度最小,称这棵树为“最优二叉树”,有时也叫“赫夫曼树”或者“哈夫曼树”。

在构建哈弗曼树时,要使树的带权路径长度最小,只需要遵循一个原则,那就是:权重越大的结点离树根越近。在图 1 中,因为结点 a 的权值最大,所以理应直接作为根结点的孩子结点。

构建哈夫曼树的过程

对于给定的有各自权值的 n 个结点,构建哈夫曼树有一个行之有效的办法:

  1. 在 n 个权值中选出两个最小的权值,对应的两个结点组成一个新的二叉树,且新二叉树的根结点的权值为左右孩子权值的和;
  2. 在原有的 n 个权值中删除那两个最小的权值,同时将新的权值加入到 n–2 个权值的行列中,以此类推;
  3. 重复 1 和 2 ,直到所以的结点构建成了一棵二叉树为止,这棵树就是哈夫曼树。

图 2 哈夫曼树的构建过程
 

图 2 中,(A)给定了四个结点a,b,c,d,权值分别为7,5,2,4;第一步如(B)所示,找出现有权值中最小的两个,2 和 4 ,相应的结点 c 和 d 构建一个新的二叉树,树根的权值为 2 + 4 = 6,同时将原有权值中的 2 和 4 删掉,将新的权值 6 加入;进入(C),重复之前的步骤。直到(D)中,所有的结点构建成了一个全新的二叉树,这就是哈夫曼树。

哈弗曼树中结点结构

构建哈夫曼树时,首先需要确定树中结点的构成。由于哈夫曼树的构建是从叶子结点开始,不断地构建新的父结点,直至树根,所以结点中应包含指向父结点的指针。但是在使用哈夫曼树时是从树根开始,根据需求遍历树中的结点,因此每个结点需要有指向其左孩子和右孩子的指针。

所以,哈夫曼树中结点构成用代码表示为:

  1. //哈夫曼树结点结构
  2. typedef struct {
  3. int weight;//结点权重
  4. int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标
  5. }HTNode, *HuffmanTree;

构建哈弗曼树的算法实现

构建哈夫曼树时,需要每次根据各个结点的权重值,筛选出其中值最小的两个结点,然后构建二叉树。

查找权重值最小的两个结点的思想是:从树组起始位置开始,首先找到两个无父结点的结点(说明还未使用其构建成树),然后和后续无父结点的结点依次做比较,有两种情况需要考虑:

  • 如果比两个结点中较小的那个还小,就保留这个结点,删除原来较大的结点;
  • 如果介于两个结点权重值之间,替换原来较大的结点;


实现代码:

 
  1. //HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置
  2. void Select(HuffmanTree HT, int end, int *s1, int *s2)
  3. {
  4. int min1, min2;
  5. //遍历数组初始下标为 1
  6. int i = 1;
  7. //找到还没构建树的结点
  8. while(HT[i].parent != 0 && i <= end){
  9. i++;
  10. }
  11. min1 = HT[i].weight;
  12. *s1 = i;
  13. i++;
  14. while(HT[i].parent != 0 && i <= end){
  15. i++;
  16. }
  17. //对找到的两个结点比较大小,min2为大的,min1为小的
  18. if(HT[i].weight < min1){
  19. min2 = min1;
  20. *s2 = *s1;
  21. min1 = HT[i].weight;
  22. *s1 = i;
  23. }else{
  24. min2 = HT[i].weight;
  25. *s2 = i;
  26. }
  27. //两个结点和后续的所有未构建成树的结点做比较
  28. for(int j=i+1; j <= end; j++)
  29. {
  30. //如果有父结点,直接跳过,进行下一个
  31. if(HT[j].parent != 0){
  32. continue;
  33. }
  34. //如果比最小的还小,将min2=min1,min1赋值新的结点的下标
  35. if(HT[j].weight < min1){
  36. min2 = min1;
  37. min1 = HT[j].weight;
  38. *s2 = *s1;
  39. *s1 = j;
  40. }
  41. //如果介于两者之间,min2赋值为新的结点的位置下标
  42. else if(HT[j].weight >= min1 && HT[j].weight < min2){
  43. min2 = HT[j].weight;
  44. *s2 = j;
  45. }
  46. }
  47. }

注意:s1和s2传入的是实参的地址,所以函数运行完成后,实参中存放的自然就是哈夫曼树中权重值最小的两个结点在数组中的位置。

构建哈弗曼树的代码实现如下:

 
  1. //HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数
  2. void CreateHuffmanTree(HuffmanTree *HT, int *w, int n)
  3. {
  4. if(n<=1) return; // 如果只有一个编码就相当于0
  5. int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点
  6. *HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用
  7. HuffmanTree p = *HT;
  8. // 初始化哈夫曼树中的所有结点
  9. for(int i = 1; i <= n; i++)
  10. {
  11. (p+i)->weight = *(w+i-1);
  12. (p+i)->parent = 0;
  13. (p+i)->left = 0;
  14. (p+i)->right = 0;
  15. }
  16. //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点
  17. for(int i = n+1; i <= m; i++)
  18. {
  19. (p+i)->weight = 0;
  20. (p+i)->parent = 0;
  21. (p+i)->left = 0;
  22. (p+i)->right = 0;
  23. }
  24. //构建哈夫曼树
  25. for(int i = n+1; i <= m; i++)
  26. {
  27. int s1, s2;
  28. Select(*HT, i-1, &s1, &s2);
  29. (*HT)[s1].parent = (*HT)[s2].parent = i;
  30. (*HT)[i].left = s1;
  31. (*HT)[i].right = s2;
  32. (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight;
  33. }
  34. }

注意,如果使用此程序,对权重值分别为 2、8、7、6、5 的节点构建哈夫曼树,最终效果如图 4(A) 所示。但其实,图 4(B) 中显示的哈夫曼树也满足条件,这两棵树的带权路径长度相同。
 


图 4 两种哈夫曼树


之所以使用此程序构建的哈夫曼树,是图 4(A) 而不是 4(B),是因为在构建哈夫曼树时,结点 2 和结点 5 构建的新的结点 7 存储在动态树组中位置,比权重值为 7 节点的存储位置还靠后,所以,在程序继续选择两个权值最小的结点时,直接选择了的叶子结点 6 和 7 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39131.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实验三 图像分割与描述

一、实验目的&#xff1a; &#xff08;1&#xff09;进一步掌握图像处理工具Matlab&#xff0c;熟悉基于Matlab的图像处理函数。 &#xff08;2&#xff09;掌握图像分割方法&#xff0c;熟悉常用图像描述方法。 二、实验原理 1.肤色检测 肤色是人类皮肤重要特征之一&#xff…

7.原 型

7.1原型 【例如】 另外- this指向&#xff1a; 构造函数和原型对象中的this都指向实例化的对象 7.2 constructor属性 每个原型对象里面都有个constructor属性( constructor构造函数) 作用&#xff1a;该属性指向该原型对象的构造函数 使用场景: 如果有多个对象的方法&#…

Springboot 实践(4)swagger-ui 测试controller

前文项目操作&#xff0c;完成了项目的创建、数据源的配置以及数据库DAO程序的生成与配置。此文讲解利用swagger-ui界面&#xff0c;测试生成的数据库DAO程序。目前&#xff0c;项目swagger-ui界面如下&#xff1a; 以”用户管理”为例&#xff0c;简单讲述swagger-ui测试数据库…

无涯教程-Perl - s函数

描述 这不是功能。这是正则表达式替换运算符。根据PATTERN中指定的正则表达式,将数据替换为REPLACE。与m //一样,分隔符由s后的第一个字符定义。 语法 以下是此函数的简单语法- s/PATTERN/REPLACE/返回值 如果失败,此函数返回0,如果成功,则返回替换次数。 例 以下是显示…

【Python机器学习】实验10 支持向量机

文章目录 支持向量机实例1 线性可分的支持向量机1.1 数据读取1.2 准备训练数据1.3 实例化线性支持向量机1.4 可视化分析 实例2 核支持向量机2.1 读取数据集2.2 定义高斯核函数2.3 创建非线性的支持向量机2.4 可视化样本类别 实例3 如何选择最优的C和gamma3.1 读取数据3.2 利用数…

Open3D 最小二乘拟合平面(SVD分解法)

目录 一、算法原理二、代码实现三、结果展示1、点云2、拟合结果四、优秀博客本文由CSDN点云侠原创,原文链接。爬虫网站自重。 一、算法原理 本文实现矩阵奇异值分解方法的最小二乘拟合平面。原理如下: 对于得到的 n n

欧拉函数(质因子分解)

思路&#xff1a; (1)欧拉函数&#xff1a;输入n则输出1~n中与n互质的数的个数。 &#xff08;2&#xff09;计算公式&#xff1a; &#xff08;3&#xff09;证明&#xff1a;&#xff08;容斥原理&#xff09;对于n个数&#xff0c;先分别摘除所有被pi整除的数&#xff0c;…

亿信ABI有什么不同,来看最新DEMO演示

为了给用户营造更好的体验环境&#xff0c;提供更丰富、更完善的服务&#xff0c;亿信华辰旗下核心产品亿信ABI DEMO再次上新啦&#xff01;本次亿信ABI DEMO环境在原有基础上焕新升级&#xff0c;带来了全新的主视觉界面、丰富的行业应用和功能演示DEMO&#xff0c;我们一起来…

季度到季度的组件选择

组件&#xff1a;<template><div class"quarter"><div class"input-wrap" id"closeId" mouseover"handler" click.stop"btn" :style"{color:colorItem}"><i class"el-icon-date"&…

【Java】BF算法(串模式匹配算法)

☀️ 什么是BF算法 BF算法&#xff0c;即暴力算法&#xff0c;是普通的模式匹配算法&#xff0c;BF算法的思想就是将目标串S的第一个与模式串T的第一个字符串进行匹配&#xff0c;若相等&#xff0c;则继续比较S的第二个字符和T的第二个字符&#xff1b;若不相等&#xff0c;则…

【计算机视觉|生成对抗】用深度卷积生成对抗网络进行无监督表示学习(DCGAN)

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 链接&#xff1a;[1511.06434] Unsupervised Representation Learning with Deep Conv…

腾讯云CVM服务器竞价实例是什么?和按量计费有什么区别?

腾讯云服务器CVM计费模式分为包年包月、按量计费和竞价实例&#xff0c;什么是竞价实例&#xff1f;竞价实例和按量付费相类似&#xff0c;优势是价格更划算&#xff0c;缺点是云服务器实例有被自动释放风险&#xff0c;腾讯云服务器网来详细说下什么是竞价实例&#xff1f;以及…

NLP——操作步骤讲义与实践链接

数据集与语料 语料是NLP的生命之源&#xff0c;所有NLP问题都是从语料中学到数据分布的规律语料的分类&#xff1a;单语料&#xff0c;平行语料&#xff0c;复杂结构 语料的例子&#xff1a;Penn Treebank, Daily Dialog, WMT-1x翻译数据集&#xff0c;中文闲聊数据集&#xf…

大数据:Numpy基础应用详解

Numpy基础应用 Numpy 是一个开源的 Python 科学计算库&#xff0c;用于快速处理任意维度的数组。Numpy 支持常见的数组和矩阵操作&#xff0c;对于同样的数值计算任务&#xff0c;使用 NumPy 不仅代码要简洁的多&#xff0c;而且 NumPy 的性能远远优于原生 Python&#xff0c;…

mysql-5.5.62-win32安装与使用

1.为啥是这个版本而不是当前最新的8.0&#xff1f; 因为我要用32位。目前mysql支持win32的版本最新只到5.7.33。 首先&#xff0c;到官网MySQL :: MySQL Downloads 然后选 选一个自己喜欢的版本就好。我这里是如标题版本。下载32位的zip。然后回来解压。 完了创建系统环境变…

项目实施方案案例模板-拿来即用

《项目实施方案》实际案例模板&#xff0c;拿来即用&#xff0c;原件可获取。 项目背景 项目目标 项目范围 项目总体计划 项目组织架构 5.1. 项目职责分工 项目风险点 6.1. 项目风险分析 6.2. 项目实施关键点 项目管理规范 7.1. 项目实施约束 7.2. 项目变更冻结 7…

(三) CUDA 硬件实现

一组带有on-chip 共享内存的SIMD多处理器 GPU可以被看作一组多处理器, 每个多处理器使用单一指令&#xff0c;多数据架构(SIMD)【单指令流多数据流】 在任何给定的时钟周期内&#xff0c;多处理器的每个处理器执行同一指令&#xff0c;但操作不同的数据 每个多处理器使用以下…

HASH索引,AVL树,B树,B+树的区别?

1. 什么是 Hash 1.1 Hash 函数 Hash 本身其实是一个函数&#xff0c;又被称为散列函数&#xff0c;它可以大幅提高我们对数据的检索效率。因为它是散列的&#xff0c;所以在存储数据的时候&#xff0c;它也是无序的。 Hash 算法是通过某种确定性的算法(例如MD5&#xff0c;S…

virtualBox桥接模式下openEuler镜像修改IP地址、openEule修改IP地址、openEule设置IP地址

安装好openEuler后,设置远程登入前,必不可少的一步,主机与虚拟机之间的通信要解决,下面给出详细步骤: 第一步:检查虚拟机适配器模式:桥接模式 第二步:登入虚拟机修改IP cd /etc/sysconfig/network-scripts vim ifcfg-enpgs3 没有vim的安装或者用vi代替:sudo dnf …

关于consul的下载方法

linux下 sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo sudo yum -y install consulwindow下 https://developer.hashicorp.com/consul/downloads 然后把里面的exe文件放在gopath下就行了 验证…