水题盛宴啦啦啦……做起来真的极其舒服,比某些毒瘤题好太多了……
数据范围极小 --> 状压 / 搜索 / 高维度dp;观察要求的均方差,开始考虑是不是能够换一下式子。我们用\(a_{x}\)来表示第 \(x\) 个矩阵的总值,则式子为:
\(ans = sqrt \frac{{\left ( \sum_{1}^{n} a_{x} - \bar{x} \right )^2}}{n}\)
转化一下,化成:
\(ans = sqrt \frac{{\left ( -n\bar{x}^2 + \sum_{1}^{n}a_{x}^2 \right )}}{n}\)
然后问题就变成了:使划分出来的矩阵的平方和最小。直接上记忆化搜索,BINGO~
#include <bits/stdc++.h> using namespace std; #define maxn 11 #define INF 99999999 #define db double int n, m, K, sum[maxn][maxn]; int f[maxn][maxn][maxn][maxn][maxn]; int tot; db aver;int read() {int x = 0;char c;c = getchar();while(c < '0' || c > '9') c = getchar();while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();return x; }int dfs(int a, int b, int c, int d, int K) {int *F = f[a][b][c][d];if(~F[K]) return F[K];else F[K] = INF;if(c * d - (a - 1) * (b - 1) < K) return F[K] = INF;if(K == 1){F[K] = sum[c][d] - sum[a - 1][d] - sum[c][b - 1] + sum[a - 1][b - 1];return F[K] = F[K] * F[K];}for(int i = a; i < c; i ++)for(int j = 1; j < K; j ++){ int x1 = dfs(a, b, i, d, j);int x2 = dfs(i + 1, b, c, d, K - j);F[K] = min(F[K], x1 + x2);} for(int i = b; i < d; i ++)for(int j = 1; j < K; j ++){int x1 = dfs(a, b, c, i, j);int x2 = dfs(a, i + 1, c, d, K - j);F[K] = min(F[K], x1 + x2);}return F[K]; }int main() {n = read(), m = read(), K = read();memset(f, -1, sizeof(f));for(int i = 1; i <= n; i ++)for(int j = 1; j <= m; j ++){int x = read(); tot += x;sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + x;}db aver = (db) tot / K;dfs(1, 1, n, m, K);printf("%.2f\n", sqrt(((db) f[1][1][n][m][K] - aver * aver * (db) (K)) / (db) K));return 0; }