《netty入门与实战》笔记-02:服务端启动流程

为什么80%的码农都做不了架构师?>>>   hot3.png

1.服务端启动流程

这一小节,我们来学习一下如何使用 Netty 来启动一个服务端应用程序,以下是服务端启动的一个非常精简的 Demo:

NettyServer.java

public class NettyServer {public static void main(String[] args) {NioEventLoopGroup bossGroup = new NioEventLoopGroup();NioEventLoopGroup workerGroup = new NioEventLoopGroup();ServerBootstrap serverBootstrap = new ServerBootstrap();serverBootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).childHandler(new ChannelInitializer<NioSocketChannel>() {protected void initChannel(NioSocketChannel ch) {}});serverBootstrap.bind(8000);}
}
  • 首先看到,我们创建了两个NioEventLoopGroup,这两个对象可以看做是传统IO编程模型的两大线程组,bossGroup表示监听端口,accept 新连接的线程组,workerGroup表示处理每一条连接的数据读写的线程组。用生活中的例子来讲就是,一个工厂要运作,必然要有一个老板负责从外面接活,然后有很多员工,负责具体干活,老板就是bossGroup,员工们就是workerGroupbossGroup接收完连接,扔给workerGroup去处理。
  • 接下来 我们创建了一个引导类 ServerBootstrap,这个类将引导我们进行服务端的启动工作,直接new出来开搞。
  • 我们通过.group(bossGroup, workerGroup)给引导类配置两大线程组,这个引导类的线程模型也就定型了。
  • 然后,我们指定我们服务端的 IO 模型为NIO,我们通过.channel(NioServerSocketChannel.class)来指定 IO 模型,当然,这里也有其他的选择,如果你想指定 IO 模型为 BIO,那么这里配置上OioServerSocketChannel.class类型即可,当然通常我们也不会这么做,因为Netty的优势就在于NIO。
  • 接着,我们调用childHandler()方法,给这个引导类创建一个ChannelInitializer,这里主要就是定义后续每条连接的数据读写,业务处理逻辑,不理解没关系,在后面我们会详细分析。ChannelInitializer这个类中,我们注意到有一个泛型参数NioSocketChannel,这个类呢,就是 Netty 对 NIO 类型的连接的抽象,而我们前面NioServerSocketChannel也是对 NIO 类型的连接的抽象,NioServerSocketChannelNioSocketChannel的概念可以和 BIO 编程模型中的ServerSocket以及Socket两个概念对应上

我们的最小化参数配置到这里就完成了,我们总结一下就是,要启动一个Netty服务端,必须要指定三类属性,分别是线程模型、IO 模型、连接读写处理逻辑,有了这三者,之后在调用bind(8000),我们就可以在本地绑定一个 8000 端口启动起来,以上这段代码读者可以直接拷贝到你的 IDE 中运行。

2.自动绑定递增端口

在上面代码中我们绑定了 8000 端口,接下来我们实现一个稍微复杂一点的逻辑,我们指定一个起始端口号,比如 1000,然后呢,我们从1000号端口往上找一个端口,直到这个端口能够绑定成功,比如 1000 端口不可用,我们就尝试绑定 1001,然后 1002,依次类推。

serverBootstrap.bind(8000);这个方法呢,它是一个异步的方法,调用之后是立即返回的,他的返回值是一个ChannelFuture,我们可以给这个ChannelFuture添加一个监听器GenericFutureListener,然后我们在GenericFutureListeneroperationComplete方法里面,我们可以监听端口是否绑定成功,接下来是监测端口是否绑定成功的代码片段

serverBootstrap.bind(8000).addListener(new GenericFutureListener<Future<? super Void>>() {public void operationComplete(Future<? super Void> future) {if (future.isSuccess()) {System.out.println("端口绑定成功!");} else {System.err.println("端口绑定失败!");}}
});

我们接下来从 1000 端口号,开始往上找端口号,直到端口绑定成功,我们要做的就是在 if (future.isSuccess())else逻辑里面重新绑定一个递增的端口号,接下来,我们把这段绑定逻辑抽取出一个bind方法

private static void bind(final ServerBootstrap serverBootstrap, final int port) {serverBootstrap.bind(port).addListener(new GenericFutureListener<Future<? super Void>>() {public void operationComplete(Future<? super Void> future) {if (future.isSuccess()) {System.out.println("端口[" + port + "]绑定成功!");} else {System.err.println("端口[" + port + "]绑定失败!");bind(serverBootstrap, port + 1);}}});
}

然后呢,以上代码中最关键的就是在端口绑定失败之后,重新调用自身方法,并且把端口号加一,然后,在我们的主流程里面,我们就可以直接调用

bind(serverBootstrap, 1000)

端口成功绑定了在1024,从 1000 开始到 1023,端口均绑定失败了,这是因为在我的 MAC 系统下,1023 以下的端口号都是被系统保留了,需要 ROOT 权限才能绑定。

以上就是自动绑定递增端口的逻辑,接下来,我们来一起学习一下,服务端启动,我们的引导类ServerBootstrap除了指定线程模型,IO 模型,连接读写处理逻辑之外,他还可以干哪些事情?

3.服务端启动其他方法

handler() 方法

serverBootstrap.handler(new ChannelInitializer<NioServerSocketChannel>() {protected void initChannel(NioServerSocketChannel ch) {System.out.println("服务端启动中");}
})

handler()方法呢,可以和我们前面分析的childHandler()方法对应起来,childHandler()用于指定处理新连接数据的读写处理逻辑,handler()用于指定在服务端启动过程中的一些逻辑,通常情况下呢,我们用不着这个方法。

attr() 方法

serverBootstrap.attr(AttributeKey.newInstance("serverName"), "nettyServer")

attr()方法可以给服务端的 channel,也就是NioServerSocketChannel指定一些自定义属性,然后我们可以通过channel.attr()取出这个属性,比如,上面的代码我们指定我们服务端channel的一个serverName属性,属性值为nettyServer,其实说白了就是给NioServerSocketChannel维护一个map而已,通常情况下,我们也用不上这个方法。

那么,当然,除了可以给服务端 channel NioServerSocketChannel指定一些自定义属性之外,我们还可以给每一条连接指定自定义属性

childAttr() 方法

serverBootstrap.childAttr(AttributeKey.newInstance("clientKey"), "clientValue")

上面的childAttr可以给每一条连接指定自定义属性,然后后续我们可以通过channel.attr()取出该属性。

childOption() 方法

serverBootstrap.childOption(ChannelOption.SO_KEEPALIVE, true).childOption(ChannelOption.TCP_NODELAY, true)

childOption()可以给每条连接设置一些TCP底层相关的属性,比如上面,我们设置了两种TCP属性,其中

  • ChannelOption.SO_KEEPALIVE表示是否开启TCP底层心跳机制,true为开启
  • ChannelOption.TCP_NODELAY表示是否开始Nagle算法,true表示关闭,false表示开启,通俗地说,如果要求高实时性,有数据发送时就马上发送,就关闭,如果需要减少发送次数减少网络交互,就开启。

其他的参数这里就不一一讲解,有兴趣的同学可以去这个类里面自行研究。

option() 方法

除了给每个连接设置这一系列属性之外,我们还可以给服务端channel设置一些属性,最常见的就是so_backlog,如下设置

serverBootstrap.option(ChannelOption.SO_BACKLOG, 1024)

表示系统用于临时存放已完成三次握手的请求的队列的最大长度,如果连接建立频繁,服务器处理创建新连接较慢,可以适当调大这个参数

4.总结

  • 本文中,我们首先学习了 Netty 服务端启动的流程,一句话来说就是:创建一个引导类,然后给他指定线程模型,IO模型,连接读写处理逻辑,绑定端口之后,服务端就启动起来了。
  • 然后,我们学习到 bind 方法是异步的,我们可以通过这个异步机制来实现端口递增绑定。
  • 最后呢,我们讨论了 Netty 服务端启动额外的参数,主要包括给服务端 Channel 或者客户端 Channel 设置属性值,设置底层 TCP 参数。

以上内容来源于掘金小册《Netty 入门与实战:仿写微信 IM 即时通讯系统》,若想获得更多,更详细的内容,请用微信扫码订阅:

转载于:https://my.oschina.net/funcy/blog/2242215

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谱聚类思想及实现

&#xff08;这个我也没有怎么懂&#xff0c;为了防止以后能用上&#xff0c;还是记录下来&#xff09; 谱聚类 注意&#xff1a;谱聚类核心聚类算法还是K-means 算法进行聚类~ 谱聚类的实现过程&#xff1a; 1.根据数据构造一个 图结构&#xff08;Graph&#xff09; &…

Tengine HTTPS原理解析、实践与调试【转】

本文邀请阿里云CDN HTTPS技术专家金九&#xff0c;分享Tengine的一些HTTPS实践经验。内容主要有四个方面&#xff1a;HTTPS趋势、HTTPS基础、HTTPS实践、HTTPS调试。 一、HTTPS趋势 这一章节主要介绍近几年和未来HTTPS的趋势&#xff0c;包括两大浏览器chrome和firefox对HTTPS的…

opencv:SIFT——尺度不变特征变换

SIFT概念&#xff1a; Sift&#xff08;尺度不变特征变换&#xff09;&#xff0c;全称是Scale Invariant Feature Transform Sift提取图像的局部特征&#xff0c;在尺度空间寻找极值点&#xff0c;并提取出其位置、尺度、方向信息。 Sfit的应用范围包括 物体辨别、机器人地图…

pca(主成分分析技术)_主成分分析技巧

pca(主成分分析技术)介绍 (Introduction) Principal Component Analysis (PCA) is an unsupervised technique for dimensionality reduction.主成分分析(PCA)是一种无监督的降维技术。 What is dimensionality reduction?什么是降维&#xff1f; Let us start with an exam…

npm link run npm script

npm link & run npm script https://blog.csdn.net/juhaotian/article/details/78672390 npm link命令可以将一个任意位置的npm包链接到全局执行环境&#xff0c;从而在任意位置使用命令行都可以直接运行该npm包。 app-cmd.cmd #!/usr/bin/env nodeecho "666" &a…

一文详解java中对JVM的深度解析、调优工具、垃圾回收

2019独角兽企业重金招聘Python工程师标准>>> jvm监控分析工具一般分为两类&#xff0c;一种是jdk自带的工具&#xff0c;一种是第三方的分析工具。jdk自带工具一般在jdk bin目录下面&#xff0c;以exe的形式直接点击就可以使用&#xff0c;其中包含分析工具已经很强…

借用继承_博物馆正在数字化,并在此过程中从数据中借用

借用继承Data visualization is a great way to celebrate our favorite pieces of art as well as reveal connections and ideas that were previously invisible. More importantly, it’s a fun way to connect things we love — visualizing data and kicking up our fee…

高斯噪声,椒盐噪声的思想及多种噪声的实现

图像噪声&#xff1a; 概念&#xff1a; • 图像噪声是图像在获取或是传输过程中受到随机信号干扰&#xff0c;妨碍人们对图像理解及分析处理 的信号。 • 很多时候将图像噪声看做多维随机过程&#xff0c;因而描述噪声的方法完全可以借用随机过程的描述&#xff0c; 也就是使…

如何识别媒体偏见_描述性语言理解,以识别文本中的潜在偏见

如何识别媒体偏见TGumGum can do to bring change by utilizing our Natural Language Processing technology to shed light on potential bias that websites may have in their content. The ideas and techniques shared in this blog are a result of the GumGum Hackatho…

分享 : 警惕MySQL运维陷阱:基于MyCat的伪分布式架构

分布式数据库已经进入了全面快速发展阶段。这种发展是与时俱进的&#xff0c;与人的需求分不开&#xff0c;因为现在信息时代的高速发展&#xff0c;导致数据量和交易量越来越大。这种现象首先导致的就是存储瓶颈&#xff0c;因为MySQL数据库实质上还是一个单机版本的数据库&am…

数据不平衡处理_如何处理多类不平衡数据说不可以

数据不平衡处理重点 (Top highlight)One of the common problems in Machine Learning is handling the imbalanced data, in which there is a highly disproportionate in the target classes.机器学习中的常见问题之一是处理不平衡的数据&#xff0c;其中目标类别的比例非常…

最小二乘法以及RANSAC(随机采样一致性)思想及实现

线性回归–最小二乘法&#xff08;Least Square Method&#xff09; 线性回归&#xff1a; 什么是线性回归&#xff1f; 举个例子&#xff0c;某商品的利润在售价为2元、5元、10元时分别为4元、10元、20元&#xff0c; 我们很容易得出商品的利润与售价的关系符合直线&#xf…

糖药病数据集分类_使用optuna和mlflow进行心脏病分类器调整

糖药病数据集分类背景 (Background) Data science should be an enjoyable process focused on delivering insights and real benefits. However, that enjoyment can sometimes get lost in tools and processes. Nowadays it is important for an applied data scientist to…

Android MVP 框架

为什么80%的码农都做不了架构师&#xff1f;>>> 前言 根据网络上的MVP套路写了一个辣鸡MVP DEMO 用到的 android studio MVPHelper插件,方便自动生成框架代码rxjavaretrofit什么是MVP MVP就是英文的Model View Presenter&#xff0c;然而实际分包并不是只有这三个包…

相似图像搜索的哈希算法思想及实现(差值哈希算法和均值哈希算法)

图像相似度比较哈希算法: 什么是哈希&#xff08;Hash&#xff09;&#xff1f; • 散列函数&#xff08;或散列算法&#xff0c;又称哈希函数&#xff0c;英语&#xff1a;Hash Function&#xff09;是一种从任何一种数据中创建小 的数字“指纹”的方法。散列函数把消息或数…

腾讯云AI应用产品总监王磊:AI 在传统产业的最佳实践

欢迎大家前往腾讯云社区&#xff0c;获取更多腾讯海量技术实践干货哦~ 背景&#xff1a;5月23-24日&#xff0c;以“焕启”为主题的腾讯“云未来”峰会在广州召开&#xff0c;广东省各级政府机构领导、海内外业内学术专家、行业大咖及技术大牛等在现场共议云计算与数字化产业创…

Toast源码深度分析

目录介绍 1.最简单的创建方法 1.1 Toast构造方法1.2 最简单的创建1.3 简单改造避免重复创建1.4 为何会出现内存泄漏1.5 吐司是系统级别的 2.源码分析 2.1 Toast(Context context)构造方法源码分析2.2 show()方法源码分析2.3 mParams.token windowToken是干什么用的2.4 schedul…

运行keras出现 FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated解决办法

运行keras出现 FutureWarning: Passing (type, 1) or ‘1type’ as a synonym of type is deprecated; in a future version of numpy, 原则来说&#xff0c;没啥影响&#xff0c;还是能运行&#xff0c;但是看着难受 解决办法&#xff1a; 点击蓝色的链接&#xff1a; 进入 …

mongdb 群集_群集文档的文本摘要

mongdb 群集This is a part 2 of the series analyzing healthcare chart notes using Natural Language Processing (NLP)这是使用自然语言处理(NLP)分析医疗保健图表笔记的系列文章的第2部分。 In the first part, we talked about cleaning the text and extracting sectio…

keras框架实现手写数字识别

详细细节可学习从零开始神经网络&#xff1a;keras框架实现数字图像识别详解&#xff01; 代码实现&#xff1a; [1]将训练数据和检测数据加载到内存中(第一次运行需要下载数据&#xff0c;会比较慢): &#xff08;mnist是手写数据集&#xff09; train_images是用于训练系统…