计算机科学必读书籍_5篇关于数据科学家的产品分类必读文章

计算机科学必读书籍

Product categorization/product classification is the organization of products into their respective departments or categories. As well, a large part of the process is the design of the product taxonomy as a whole.

产品分类/产品分类是将产品组织到各自部门或类别中。 同样,整个过程的很大一部分是整个产品分类的设计。

Product categorization was initially a text classification task that analyzed the product’s title to choose the appropriate category. However, numerous methods have been developed which take into account the product title, description, images, and other available metadata. The following papers on product categorization represent essential reading in the field and offer novel approaches to product classification tasks.

产品分类最初是一个文本分类任务,用于分析产品标题以选择适当的类别。 但是,已经开发出许多方法来考虑产品标题,描述,图像和其他可用的元数据。 以下有关产品分类的论文代表了该领域的重要阅读内容,并为产品分类任务提供了新颖的方法。

1.不要分类,翻译 (1. Don’t Classify, Translate)

In this paper, researchers from the National University of Singapore and the Rakuten Institute of Technology propose and explain a novel machine translation approach to product categorization. The experiment uses the Rakuten Data Challenge and Rakuten Ichiba datasets. Their method translates or converts a product’s description into a sequence of tokens which represent a root-to-leaf path to the correct category. Using this method, they are also able to propose meaningful new paths in the taxonomy.

在本文中,新加坡国立大学和乐天技术学院的研究人员提出并解释了一种新颖的机器翻译方法来进行产品分类。 该实验使用了Rakuten Data Challenge和Rakuten Ichiba数据集。 他们的方法将产品的描述转换或转换为一系列标记,这些标记代表从根到叶的正确类别路径。 使用这种方法,他们还能够在分类法中提出有意义的新路径。

The researchers state that their method outperforms many of the existing classification algorithms commonly used in machine learning today.

研究人员指出,他们的方法优于当今机器学习中常用的许多现有分类算法。

Published/Last Updated — Dec. 14, 2018

发布/最新更新— 2018年12月14日

Authors and Contributors — Maggie Yundi Li (National University of Singapore), Stanley Kok (National University of Singapore), and Liling Tan (Rakuten Institute of Technology)

作者和撰稿人:李Mag(新加坡国立大学),斯坦利·科克(新加坡国立大学)和谭丽玲(乐天技术学院)

Read Now

现在读

2.使用神经注意模型对日本商品名称进行大规模分类 (2. Large-Scale Categorization of Japanese Product Titles Using Neural Attention Models)

The authors of this paper propose attention convolutional neural network (ACNN) models over baseline convolutional neural network (CNN) models and gradient boosted tree (GBT) classifiers. The study uses Japanese product titles taken from Rakuten Ichiba as training data. Using this data, the authors compare the performance of the three methods (ACNN, CNN, and GBT) for large-scale product categorization. While differences in accuracy can be less than 5%, even minor improvements in accuracy can result in millions of additional correct categorizations.

本文的作者提出了关注卷积神经网络(ACNN)模型,而不是基线卷积神经网络(CNN)模型和梯度提升树(GBT)分类器。 该研究使用从Rakuten Ichiba获得的日语产品标题作为培训数据。 利用这些数据,作者比较了三种方法(ACNN,CNN和GBT)用于大规模产品分类的性能。 尽管精度差异可以小于5%,但即使精度略有提高,也可以导致数百万种其他正确的分类。

Lastly, the authors explain how an ensemble of ACNN and GBT models can further minimize false categorizations.

最后,作者解释了ACNN和GBT模型的集成如何进一步减少错误分类。

Published/Last Updated — April, 2017 for EACL 2017

已发布/最新更新— 2017年4月,适用于EACL 2017

Authors and Contributors — From the Rakuten Institute of Technology: Yandi Xia, Aaron Levine, Pradipto Das Giuseppe Di Fabbrizio, Keiji Shinzato and Ankur Datta

作者和撰稿人—来自乐天技术学院:夏彦迪,亚伦·莱文,Pradipto Das Giuseppe Di Fabbrizio,京急新zato和安库·达塔

Read Now

现在读

3.地图集:电子商务服装产品分类的数据集和基准 (3. Atlas: A Dataset and Benchmark for Ecommerce Clothing Product Classification)

Image for post

Researchers at the University of Colorado and Ericsson Research (Chennai, India) have created a large product dataset known as Atlas. In this paper, the team presents their dataset which includes over 186,000 images of clothing products along with their product titles. Furthermore, they introduce related work in the field that has influenced their study. Finally, they test their dataset using a Resnet34 classification model and a Seq to Seq model to categorize the products. The data is taken from Indian ecommerce stores, so some of the categories used may not be applicable to Western markets. However, the dataset has been open-sourced and is available on Github.

科罗拉多大学和爱立信研究公司(印度金奈)的研究人员创建了一个名为Atlas的大型产品数据集。 在本文中,研究小组展示了他们的数据集,其中包括超过186,000种服装产品的图像以及产品标题。 此外,他们介绍了影响他们的研究领域的相关工作。 最后,他们使用Resnet34分类模型和Seq to Seq模型对产品进行测试,以对产品进行分类。 数据来自印度的电子商务商店,因此使用的某些类别可能不适用于西方市场。 但是,该数据集已经开源,可以在Github上使用。

Published/Last Updated — Aug. 19, 2019

发布/最后更新— 2019年8月19日

Authors and Contributors — Venkatesh Umaashankar (Ericsson Research), Girish Shanmugam (Ericsson Research), and Aditi Prakash (University of Colorado)

作者和撰稿人— Venkatesh Umaashankar(爱立信研究中心),Girish Shanmugam(爱立信研究中心)和Aditi Prakash(科罗拉多大学)

Read Now

现在读

4.使用结构化和非结构化属性的大规模产品分类 (4. Large Scale Product Categorization using Structured and Unstructured Attributes)

In this study, a team at WalmartLabs compares hierarchical models to flat models for product categorization.

在这项研究中,沃尔玛实验室的一个团队将层次模型与平面模型进行了比较,以进行产品分类。

The researchers employ deep-learning based models which extract features from each product to create a product signature. In the paper, the researchers describe a multi-LSTM and multi-CNN based approach to this extreme classification task. Furthermore, they present a novel way to use structured attributes. The team states that their methods can be scaled to take into account any number of product attributes during categorization.

研究人员采用了基于深度学习的模型,该模型从每个产品中提取功能以创建产品签名。 在论文中,研究人员描述了一种基于多LSTM和多CNN的方法来完成这种极端分类任务。 此外,它们提供了一种使用结构化属性的新颖方法。 该团队指出,他们的方法可以扩展,以在分类过程中考虑任何数量的产品属性。

Published/Last Updated — Mar. 1, 2019

已发布/最新更新— 2019年3月1日

Authors and Contributors — From WalmartLabs: Abhinandan Krishnan and Abilash Amarthaluri

作者和贡献者—来自沃尔玛实验室:Abhinandan Krishnan和Abilash Amarthaluri

Read Now

现在读

5.使用多模式融合模型进行多标签产品分类 (5. Multi-Label Product Categorization Using Multi-Modal Fusion Models)

In this paper, researchers from New York University and U.S. Bank investigate multi-modal approaches to categorize products on Amazon. Their approach utilizes multiple classifiers trained on each type of input data from the product listings. Using a dataset of 9.4 million Amazon products, they developed a tri-modal model for product classification based on product images, titles, and descriptions. Their tri-modal late fusion model retains an F1 score of 88.2%.

在本文中,来自纽约大学和美国银行的研究人员研究了多模式方法来对亚马逊上的产品进行分类。 他们的方法利用了针对产品列表中每种输入数据类型进行训练的多个分类器。 他们使用940万个Amazon产品的数据集,开发了一种基于产品图像,标题和描述的产品分类的三峰模型。 他们的三峰后期融合模型保留了88.2%的F1分数。

The findings of their study demonstrate that increasing the number of modalities could improve performance in multi-label product categorization.

他们研究的结果表明,增加模式数量可以改善多标签产品分类的性能。

Published/Last Updated — June 30, 2019

发布/最新更新— 2019年6月30日

Authors and Contributors — Pasawee Wirojwatanakul (New York University) and Artit Wangperawong (U.S. Bank)

作者和贡献者— Pasawee Wirojwatanakul(纽约大学)和Artit Wangperawong(美国银行)

Read Now

现在读

In the papers on product categorization above, the researchers trained their models on open datasets which included millions of products. However, if you are building a product categorization model for commercial use, many open datasets may not be available to you.

在上面有关产品分类的论文中,研究人员在包含数百万种产品的开放数据集上训练了他们的模型。 但是,如果您要构建用于商业用途的产品分类模型,则可能无法使用许多开放数据集。

Looking for training data for your product classification model? Check out this training data guide and these open datasets.

寻找针对您的产品分类模型的培训数据? 查阅本培训数据指南和这些开放的数据集 。

翻译自: https://medium.com/analytics-vidhya/5-must-read-papers-on-product-categorization-for-data-scientists-19c98421cef3

计算机科学必读书籍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

交替最小二乘矩阵分解_使用交替最小二乘矩阵分解与pyspark建立推荐系统

交替最小二乘矩阵分解pyspark上的动手推荐系统 (Hands-on recommender system on pyspark) Recommender System is an information filtering tool that seeks to predict which product a user will like, and based on that, recommends a few products to the users. For ex…

python 网页编程_通过Python编程检索网页

python 网页编程The internet and the World Wide Web (WWW), is probably the most prominent source of information today. Most of that information is retrievable through HTTP. HTTP was invented originally to share pages of hypertext (hence the name Hypertext T…

火种 ctf_分析我的火种数据

火种 ctfOriginally published at https://www.linkedin.com on March 27, 2020 (data up to date as of March 20, 2020).最初于 2020年3月27日 在 https://www.linkedin.com 上 发布 (数据截至2020年3月20日)。 Day 3 of social distancing.社会疏离的第三天。 As I sit on…

data studio_面向营销人员的Data Studio —报表指南

data studioIn this guide, we describe both the theoretical and practical sides of reporting with Google Data Studio. You can use this guide as a comprehensive cheat sheet in your everyday marketing.在本指南中,我们描述了使用Google Data Studio进行…

人流量统计系统介绍_统计介绍

人流量统计系统介绍Its very important to know about statistics . May you be a from a finance background, may you be data scientist or a data analyst, life is all about mathematics. As per the wiki definition “Statistics is the discipline that concerns the …

乐高ev3 读取外部数据_数据就是新乐高

乐高ev3 读取外部数据When I was a kid, I used to love playing with Lego. My brother and I built almost all kinds of stuff with Lego — animals, cars, houses, and even spaceships. As time went on, our creations became more ambitious and realistic. There were…

图像灰度化与二值化

图像灰度化 什么是图像灰度化? 图像灰度化并不是将单纯的图像变成灰色,而是将图片的BGR各通道以某种规律综合起来,使图片显示位灰色。 规律如下: 手动实现灰度化 首先我们采用手动灰度化的方式: 其思想就是&#…

分析citibike数据eda

数据科学 (Data Science) CitiBike is New York City’s famous bike rental company and the largest in the USA. CitiBike launched in May 2013 and has become an essential part of the transportation network. They make commute fun, efficient, and affordable — no…

上采样(放大图像)和下采样(缩小图像)(最邻近插值和双线性插值的理解和实现)

上采样和下采样 什么是上采样和下采样? • 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有 两个:1、使得图像符合显示区域的大小;2、生成对应图…

r语言绘制雷达图_用r绘制雷达蜘蛛图

r语言绘制雷达图I’ve tried several different types of NBA analytical articles within my readership who are a group of true fans of basketball. I found that the most popular articles are not those with state-of-the-art machine learning technologies, but tho…

java 分裂数字_分裂的补充:超越数字,打印物理可视化

java 分裂数字As noted in my earlier Nightingale writings, color harmony is the process of choosing colors on a Color Wheel that work well together in the composition of an image. Today, I will step further into color theory by discussing the Split Compleme…

结构化数据建模——titanic数据集的模型建立和训练(Pytorch版)

本文参考《20天吃透Pytorch》来实现titanic数据集的模型建立和训练 在书中理论的同时加入自己的理解。 一,准备数据 数据加载 titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。 结构化数据一般会使用Pandas中的DataFrame进行预处理…

比赛,幸福度_幸福与生活满意度

比赛,幸福度What is the purpose of life? Is that to be happy? Why people go through all the pain and hardship? Is it to achieve happiness in some way?人生的目的是什么? 那是幸福吗? 人们为什么要经历所有的痛苦和磨难? 是通过…

带有postgres和jupyter笔记本的Titanic数据集

PostgreSQL is a powerful, open source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance.PostgreSQL是一个功能强大的开源对象关系数据库系统&am…

Django学习--数据库同步操作技巧

同步数据库:使用上述两条命令同步数据库1.认识migrations目录:migrations目录作用:用来存放通过makemigrations命令生成的数据库脚本,里面的生成的脚本不要轻易修改。要正常的使用数据库同步的功能,app目录下必须要有m…

React 新 Context API 在前端状态管理的实践

2019独角兽企业重金招聘Python工程师标准>>> 本文转载至:今日头条技术博客 众所周知,React的单向数据流模式导致状态只能一级一级的由父组件传递到子组件,在大中型应用中较为繁琐不好管理,通常我们需要使用Redux来帮助…

机器学习模型 非线性模型_机器学习模型说明

机器学习模型 非线性模型A Case Study of Shap and pdp using Diabetes dataset使用糖尿病数据集对Shap和pdp进行案例研究 Explaining Machine Learning Models has always been a difficult concept to comprehend in which model results and performance stay black box (h…

5分钟内完成胸部CT扫描机器学习

This post provides an overview of chest CT scan machine learning organized by clinical goal, data representation, task, and model.这篇文章按临床目标,数据表示,任务和模型组织了胸部CT扫描机器学习的概述。 A chest CT scan is a grayscale 3…

Pytorch高阶API示范——线性回归模型

本文与《20天吃透Pytorch》有所不同,《20天吃透Pytorch》中是继承之前的模型进行拟合,本文是单独建立网络进行拟合。 代码实现: import torch import numpy as np import matplotlib.pyplot as plt import pandas as pd from torch import …

作业要求 20181023-3 每周例行报告

本周要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2282 1、本周PSP 总计:927min 2、本周进度条 代码行数 博文字数 用到的软件工程知识点 217 757 PSP、版本控制 3、累积进度图 (1)累积代码折线图 &…