对Faster R-CNN的理解(1)

目标检测是一种基于目标几何和统计特征的图像分割,最新的进展一般是通过R-CNN(基于区域的卷积神经网络)来实现的,其中最重要的方法之一是Faster R-CNN。

1. 总体结构

Faster R-CNN的基本结构如下图所示,其基础是深度全卷积网络(ZF或者VGG-16)。在深度全卷积网络输出的特征图(Feature Map)上,增加了区域提议网络(RPN,Region Proposal Network),该网络的主要任务是提出Proposals。根据提出的这些Proposals对特征图进行裁剪,当然对不同区域裁剪以后的尺寸是不一致的,因此需要进行RoI池化(RoI Pooling),转换成统一的尺寸,最终得到每个区域的分类。

 

转载于:https://www.cnblogs.com/mstk/p/9879175.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/388091.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据业务学习笔记_学习业务成为一名出色的数据科学家

大数据业务学习笔记意见 (Opinion) A lot of aspiring Data Scientists think what they need to become a Data Scientist is :许多有抱负的数据科学家认为,成为一名数据科学家需要具备以下条件: Coding 编码 Statistic 统计 Math 数学 Machine Learni…

postman 请求参数为数组及JsonObject

2019独角兽企业重金招聘Python工程师标准>>> 1. (1)数组的请求方式(post) https://blog.csdn.net/qq_21205435/article/details/81909184 (2)数组的请求方式(get) http://localhost:port/list?ages10,20,30 后端接收方式: PostMa…

python 开发api_使用FastAPI和Python快速开发高性能API

python 开发apiIf you have read some of my previous Python articles, you know I’m a Flask fan. It is my go-to for building APIs in Python. However, recently I started to hear a lot about a new API framework for Python called FastAPI. After building some AP…

基于easyui开发Web版Activiti流程定制器详解(一)——目录结构

题外话(可略过): 前一段时间(要是没记错的话应该是3个月以前)发布了一个更新版本,很多人说没有文档看着比较困难,所以打算拿点时间出来详细给大家讲解一下,…

基于easyui开发Web版Activiti流程定制器详解(二)——文件列表

上一篇我们介绍了目录结构,这篇给大家整理一个文件列表以及详细说明,方便大家查找文件。 由于设计器文件主要保存在wf/designer和js/designer目录下,所以主要针对这两个目录进行详细说明。 wf/designer目录文件详解…

Power BI:M与DAX以及度量与计算列

When I embarked on my Power BI journey I was almost immediately slapped with an onslaught of foreign and perplexing terms that all seemed to do similar, but somehow different, things.当我开始Power BI之旅时,我几乎立刻受到了外国和困惑术语的冲击&am…

git 基本命令和操作

设置全局用户名密码 $ git config --global user.name runoob $ git config --global user.email testrunoob.comgit init:初始化仓库 创建新的 Git 仓库 git clone: 拷贝一个 Git 仓库到本地 : git clone [url]git add:将新增的文件添加到缓存 : git add test.htmlgit status …

基于easyui开发Web版Activiti流程定制器详解(三)——页面结构(上)

上一篇介绍了定制器相关的文件,这篇我们来看看整个定制器的界面部分,了解了页面结构有助于更好的理解定制器的实现,那么现在开始吧! 首先,我们来看看整体的结构: 整体结构比较简单…

基于easyui开发Web版Activiti流程定制器详解(四)——页面结构(下)

题外话: 这两天周末在家陪老婆和儿子没上来更新请大家见谅!上一篇介绍了调色板和画布区的页面结构,这篇讲解一下属性区的结构也是定制器最重要的一个页面。 属性区整体页面结构如图: 在这个区域可以定义工…

梯度下降法优化目标函数_如何通过3个简单的步骤区分梯度下降目标函数

梯度下降法优化目标函数Nowadays we can learn about domains that were usually reserved for academic communities. From Artificial Intelligence to Quantum Physics, we can browse an enormous amount of information available on the Internet and benefit from it.如…

FFmpeg 是如何实现多态的?

2019独角兽企业重金招聘Python工程师标准>>> 前言 众所周知,FFmpeg 在解码的时候,无论输入文件是 MP4 文件还是 FLV 文件,或者其它文件格式,都能正确解封装、解码,而代码不需要针对不同的格式做出任何改变&…

基于easyui开发Web版Activiti流程定制器详解(五)——Draw2d详解(一)

背景: 小弟工作已有十年有余,期间接触了不少工作流产品,个人比较喜欢的还是JBPM,因为出自名门Jboss所以备受推崇,但是现在JBPM版本已经与自己当年使用的版本(3.X)大相径…

seaborn 子图_Seaborn FacetGrid:进一步完善子图

seaborn 子图Data visualizations are essential in data analysis. The famous saying “one picture is worth a thousand words” holds true in the scope of data visualizations as well. In this post, I will explain a well-structured, very informative collection …

基于easyui开发Web版Activiti流程定制器详解(六)——Draw2d的扩展(一)

题外话: 最近在忙公司的云项目空闲时间不是很多,所以很久没来更新,今天补上一篇! 回顾: 前几篇介绍了一下设计器的界面和Draw2d基础知识,这篇讲解一下本设计器如何扩展Draw2d。 进…

深度学习网络总结

1.Siamese network Siamese [saiə mi:z] 孪生 左图的孪生网络是指两个网络通过共享权值实现对输入的输出,右图的伪孪生网络则不共享权值(pseudo-siamese network)。 孪生神经网络是用来衡量两个输入的相似度,可以用来人脸验证、语义相似度分析、QA匹配…

异常检测时间序列_时间序列的无监督异常检测

异常检测时间序列To understand the normal behaviour of any flow on time axis and detect anomaly situations is one of the prominent fields in data driven studies. These studies are mostly conducted in unsupervised manner, since labelling the data in real lif…

python设计模式(七):组合模式

组合,将对象组合成树状结构,来表示业务逻辑上的[部分-整体]层次,这种组合使单个对象和组合对象的使用方法一样。 如描述一家公司的层次结构,那么我们用办公室来表示节点,则总经理办公司是根节点,下面分别由…

存款惊人_如何使您的图快速美丽惊人

存款惊人So, you just finished retrieving, processing, and analyzing your data. You grab your data and you decide to graph it so you can show others your findings. You click ‘graph’ and……因此,您刚刚完成了数据的检索,处理和分析。 您获…

pytest自动化6:pytest.mark.parametrize装饰器--测试用例参数化

前言:pytest.mark.parametrize装饰器可以实现测试用例参数化。 parametrizing 1. 下面是一个简单是实例,检查一定的输入和期望输出测试功能的典型例子 2. 标记单个测试实例为失败,例如使用内置的mark.xfail,则跳过该用例不执行直…

基于easyui开发Web版Activiti流程定制器详解(六)——Draw2d详解(二)

上一篇我们介绍了Draw2d整体结构,展示了组件类关系图,其中比较重要的类有Node、Canvas、Command、Port、Connection等,这篇将进一步介绍Draw2d如何使用以及如何扩展。 进入主题: 详细介绍一下Draw2d中几个…