一年没做出量化策略_量化信念:如何做出更好的决定

一年没做出量化策略

By Stuart George, Executive Director of Design Technology at Method

Method设计技术执行总监Stuart George

When Andrew Mason, founder of Groupon, wanted to improve his email conversion metrics, he turned to data analysis. His team tested the impact of sending two emails per day instead of one, and found that, while more double-emailed customers tended to unsubscribe, the ones who stayed generated more revenue. Ignoring his intuition, he had his team switch to the two-a-day model.

Groupon的创始人安德鲁·梅森(Andrew Mason)想改善电子邮件转换指标时,便转向数据分析。 他的团队测试了每天发送两封电子邮件而不是每天发送一封电子邮件的影响,并发现,尽管有更多重复发送电子邮件的客户倾向于退订,但留下的客户却产生了更多的收入。 无视他的直觉,他让他的团队改用每天两次的模型。

This was not a good decision. Whereas there is no doubt that the Groupon data scientists achieved statistically significant results, they failed to consider the long-term effects of the change. Groupon became little more than a “marketplace of coupons,” Mason admits, eventually burning through the revenue potential of their dwindling market.

这不是一个好决定。 毫无疑问,Groupon数据科学家取得了统计上显着的结果,但他们没有考虑这一变化的长期影响。 梅森承认 ,Groupon仅仅是一个“优惠券市场”,最终烧毁了其日益萎缩的市场的潜在收入。

From this example, it would be easy to conclude that data-driven decision making is more trouble than it’s worth.

从这个例子中,很容易得出结论,数据驱动的决策比其价值更大。

Putting your faith in statistics and modeling alone can be quite risky, as data-driven analytics and insights are very prone to “crimes” of malpractice and misuse. But equally, an over-reliance on intuition can lead to suboptimal decision making, especially within teams.

仅仅依靠统计和建模可能会带来很大的风险,因为数据驱动的分析和见解很容易发生渎职和滥用的“罪行”。 但同样,过分依赖直觉会导致决策不理想,尤其是在团队内部。

When data is expensive or difficult to source, many companies use qualitative frameworks to synthesize ideas and opinions. While these can help simplify incredibly complex information, they often rely too heavily on intuition and fail to immunize teams from the perils of human bias.

当数据昂贵或难以获取时,许多公司使用定性框架来综合思想和观点。 尽管这些可以帮助简化极其复杂的信息,但它们通常过于依赖直觉,无法使团队免受人为偏见的危害。

And we humans have a lot of biases to be wary of. Confirmation bias, availability bias, or representativeness bias, to name a few, can help us simplify decision making based on past experience — but this can often mean that we judge incorrectly. All these biases compound with other social biases in group decision making, creating minefields of judgement errors for project teams.

我们人类有很多偏见需要警惕。 确认偏见,可用性偏见或代表性偏见等可以帮助我们根据过去的经验简化决策,但这通常意味着我们判断不正确。 所有这些偏见与集体决策中的其他社会偏见加在一起,为项目团队创造了判断错误的雷区。

So how might we balance intuition and data to make better group decisions? At Method we have a method. We call it Fact-based Hypothesis Testing, and it’s a way to help us make better decisions from qual and quant evidence and remove the bias that occurs in these decisions. When evidence for a particular hypothesis is mainly subjective or subjective and qualitative, Fact-Based Hypothesis Testing can make rigorous statistical analysis possible. This is achieved by asking team members questions about how artifacts, evidence and data acquired during the project affect the likelihood of each hypothesis being true. These answers are then analyzed and combined using Bayesian statistics. The system creates an audit trail of how the group considered evidence during the course of the project and how the group’s opinions change through the course of a project.

那么,我们如何平衡直觉和数据来做出更好的团队决策呢? 在Method中,有一个方法。 我们称其为“基于事实的假设检验” ,这是一种帮助我们根据合格和定量证据做出更好的决策并消除这些决策中出现偏见的方法。 当特定假设的证据主要是主观的或主观的和定性的时,基于事实的假设检验可以使进行严格的统计分析成为可能。 这是通过向团队成员询问有关在项目期间获取的工件,证据和数据如何影响每个假设为真的可能性来实现的。 然后使用贝叶斯统计分析和组合这些答案。 该系统会创建审核跟踪,以了解小组在项目过程中如何考虑证据以及小组的意见在项目过程中如何变化。

To illustrate how the system works, consider the development of an energy usage app called EcoWatch. Your team is trying to determine if the product is desirable to 25- to 34-year-old first-time homeowners by evaluating a number of pieces of evidence. You could frame the project as a test of two hypotheses:

为了说明该系统如何工作,请考虑开发一个名为EcoWatch的能源使用应用程序。 您的团队正在通过评估许多证据来确定25至34岁的首次购房者是否需要该产品。 您可以将项目设计为两个假设的检验:

“Hypothesis A: EcoWatch is desirable to 25–34 year old first-time homeowners” “Hypothesis B: EcoWatch is not desirable to 25–34 year old first-time homeowners”

“假设A:25-34岁的首次购房者需要EcoWatch”“假设B:25-34岁的首次购房者不希望使用EcoWatch”

First, you would define your team’s “prior probability of a hypothesis.” Ask each team member to evaluate how likely they believe each hypothesis is to be true in qualitative terms (on a scale of impossible to extremely likely). The system then converts the designer’s evaluations into probabilities which are combined to produce a group likelihood of a hypothesis being true before evaluating evidence.

首先,您要定义团队的“假设的先验概率”。 要求每个团队成员以定性的方式评估他们认为每个假设真实的可能性(以不可能到极有可能的程度)。 然后,系统将设计者的评估转换为概率,在评估证据之前,将这些概率合并以产生假设为真的组似然。

Then you would evaluate the evidence from the project — in this case, evidence may look like the results of a survey or the synthesis of a user test. For each piece of evidence, the system asks two questions:

然后,您将评估项目中的证据-在这种情况下,证据可能看起来像调查结果或用户测试的综合结果。 对于每个证据,系统都会提出两个问题:

“If Hypothesis A were 100 percent true, how likely is it that you would see this evidence?”

“如果假设A为100%正确,那么您看到该证据的可能性有多大?”

“If Hypothesis B were 100 percent false, how likely is it that you would see this evidence?”

“如果假设B为100%错误,那么您看到该证据的可能性有多大?”

If I were a team member, I may be inclined to say that the answer to the first question is “likely” and the second is “unlikely.” Using the theory of Bayesian statistics, we can combine all the team member’s answers to produce a group answer that fairly represents the group’s collective beliefs. This process continues as new evidence emerges or is added to the system, creating an audit trail of the likelihood of each hypothesis over time. By the end of the project, not only do we have the group’s preferred conclusion but also a rigorous and systematic way of understanding how the team arrived at its decision.

如果我是团队成员,我可能会倾向于说,第一个问题的答案是“可能”,第二个问题的答案是“不太可能”。 使用贝叶斯统计理论,我们可以将所有团队成员的答案结合起来,以得出公平地代表团队集体信念的团队答案。 随着新证据的出现或将新证据添加到系统中,此过程将继续进行,从而创建每个假设随时间变化的可能性的审计线索。 到项目结束时,我们不仅获得了小组的首选结论,而且以一种严格而系统的方式来了解团队是如何做出决定的。

The Fact-Based Hypothesis Testing framework has four key features:

基于事实的假设检验框架具有四个关键特征:

  1. Independent: each person evaluates the relevance of evidence independently from all other designers, helping to mitigate the effect of team groupthink.

    独立性:每个人都独立于其他所有设计师评估证据的相关性,从而有助于减轻团队集体思考的影响。

  2. Anonymous: each person’s answers are kept secret from the rest of the group, meaning there can be no finger-pointing if a person’s opinion dissents from the group.

    匿名 :每个人的答案都与小组其他成员保密,这意味着如果一个人的意见与小组不同,就不会有指责。

  3. Rigorous: the team’s answers are combined using a statistical procedure that avoids some of the pitfalls of simple aggregation techniques such as pooling or averaging.

    严谨:使用统计程序组合团队的答案,避免了简单的汇总技术(如合并或平均)的一些陷阱。

  4. Calibrated: if the team leader believes a systematic bias could be at play in the group’s decision making, they can create fake evidence that, if true, would strongly confirm one hypothesis over all others. If the team members don’t evaluate this evidence in an appropriate fashion, the team leader can highlight the discrepancy to their team and address the bias.

    已校准:如果团队负责人认为系统的偏见可能会影响团队的决策,则他们可以创建虚假证据,如果为真,将强有力地证实一个假设高于所有其他假设。 如果团队成员没有以适当的方式评估此证据,则团队负责人可以突出显示与团队的差异并解决偏见。

If Andrew Mason of Groupon had evaluated his email decision with Fact-based Hypothesis Testing, he may have found that keeping with one email made sense to decrease customer churn. He would have been able to balance the data against his intuition, without feeling the need to choose one over the other. And he could have brought that decision to his shareholders with an audit trail, giving them a window into what hypotheses were considered, what evidence was evaluated, and how his team’s opinion of the hypotheses changed over time.

如果Groupon的Andrew Mason使用基于事实的假设测试评估了他的电子邮件决定,他可能会发现保留一封电子邮件可以减少客户流失。 他本来可以根据自己的直觉来平衡数据,而无需感觉需要选择一个。 而且他本可以通过审计跟踪将该决定带给其股东,让他们有机会了解所考虑的假设,所评估的证据以及其团队对假设的看法随时间变化的方式。

* * *

* * *

This article was written by Stuart George and edited by Erin Peace. Illustration by Claire Lorman. To learn more about our process, or understand how your teams might use Fact-based Hypothesis Testing, please get in touch.

本文由Stuart George撰写,由Erin Peace编辑。 克莱尔·洛曼(Claire Lorman)的插图。 要了解有关我们流程的更多信息,或了解您的团队如何使用基于事实的假设检验,请 联系

翻译自: https://medium.com/method-perspectives/quantifying-belief-how-to-make-better-decisions-c98d28344bf8

一年没做出量化策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387852.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Jetpack组件之数据库Room详解(二)

本文涉及Library的版本如下: androidx.room:room-runtime:2.1.0-alpha03androidx.room:room-compiler:2.1.0-alpha03(注解编译器)回顾一下安卓的SQLiteOpenHelper相关类 首先放一个关于安卓数据库的类图: SQLiteOpenHelper是一个抽象类,通常自己实现数据…

图像识别中的深度学习

来源:《中国计算机学会通讯》第8期《专题》 作者:王晓刚 深度学习发展历史 深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神…

多个css样式合并到一个“目录”css文件中

执行访问jsp后发现没有效果 同样的代码,在html中效果对比如下: 具体原因:不清楚,暂时记着~~~在jsp中不支持import这种css样式的引用 转载于:https://www.cnblogs.com/mangwusuozhi/p/10050108.html

Git 学习笔记之 merge

Merge: 1、Fast-forward(快进式) 2、recursice strategy (策略合并,三方合并) Fast-forward 策略合并 //创建一个文件夹,并初始化 Git mkdir GitDemo cd GitDemo git init//初次提交,创建 master 分支 touch master.tx…

熊猫直播 使用什么sdk_没什么可花的-但是16项基本操作才能让您开始使用熊猫

熊猫直播 使用什么sdkPython has become the go-to programming language for many data scientists and machine learning researchers. One essential data processing tool for them to make this choice is the pandas library. For sure, the pandas library is so versat…

萌新一手包App前后端开发日记(一)

从事Android移动端也有些日子了,还记得一开始选择这份工作,是憧憬着有朝一日能让亲朋好友用上自己开发的软件,但日子久了才发现,并不是所有的公司,所有的项目的适用群体都是“亲朋好友”,/无奈脸 摊手。当…

方差,协方差 、统计学的基本概念

一、统计学的基本概念 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点&#xf…

关系型数据库的核心单元是_核中的数据关系

关系型数据库的核心单元是Nucleoid is an open source (Apache 2.0), a runtime environment that provides logical integrity in declarative programming, and at the same time, it stores declarative statements so that it doesn’t require external database, in shor…

MongoDB第二天

集合的操作: db.表名称 show tables / collection db.表名.drop() 文档的操作: 插入数据 db.表名.insert({"name":"jerry"}) db.insertMany([{"name":"sb",...}]) var ul {"name":"sb"} db.sb.insert(ul) db.sb.…

Python 主成分分析PCA

Python 主成分分析PCA 主成分分析&#xff08;PCA&#xff09;是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法&#xff0c;PCA的思想是将n维特征映射到k维上&#xff08;k<n&#xff09;&#xff0c;这k维特征称为主元&#xff0c;是旧特征的线性组合&#xf…

小程序 国际化_在国际化您的应用程序时忘记的一件事

小程序 国际化The hidden bugs waiting to be found by your international users您的国际用户正在等待发现的隐藏错误 While internationalizing our applications, we focus on the things we can see: text, tool-tips, error messages, and the like. But, hidden in our …

三. 性能测试领域

能力验证&#xff1a; 概念&#xff1a;系统能否在A条件下具备B能力 应用&#xff1a;为客户进行系统上线后的验收测试&#xff0c;作为第三方对一个已经部署系统的性能验证 特点&#xff1a;需要在已确定的环境下运行 需要根据典型场景设计测试方案和用例 一个典型场景包括操…

PCA主成分分析Python实现

作者&#xff1a;拾毅者 出处&#xff1a;http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源码&#xff1a;https://github.com/csuldw/MachineLearning/tree/master/PCA PCA&#xff08;principle component analysis&#xff09; &#xff0c;主成分分…

scp

将文件或目录从本地通过网络拷贝到目标端。拷贝目录要带 -r 参数 格式&#xff1a;scp 本地用户名IP地址:文件名1 远程用户名IP地址:文件名 2 例&#xff1a; scp media.repo root192.168.20.32:/etc/yum.repos.d/ 将远程主机文件或目录拷贝到本机&#xff0c;源和目的参数调换…

robo 3t连接_使用robo 3t studio 3t连接到地图集

robo 3t连接Robo 3T (formerly Robomongo) is a graphical application to connect to MongoDB. The newest version now includes support for TLS/SSL and SNI which is required to connect to Atlas M0 free tier clusters.Robo 3T(以前称为Robomongo )是用于连接MongoDB的…

JavaWeb--JavaEE

一、JavaEE平台安装1、升级eclipseEE插件2、MyEclipse二、配置Eclipse工作空间1.字体设置 2.工作空间编码 UTF-83.JDK版本指定 4.集成Tomcat Server运行环境5.配置server webapps目录 端口号 启动时间等三、创建第一个Web项目1.创建 Web Project2.设置 tomcat、创建web.xml3.目…

软件需求规格说明书通用模版_通用需求挑战和机遇

软件需求规格说明书通用模版When developing applications there will be requirements that are needed on more than one application. Examples of such common requirements are non-functional, cookie consent and design patterns. How can we work with these types of…

python版PCA(主成分分析)

python版PCA&#xff08;主成分分析&#xff09; 在用统计分析方法研究这个多变量的课题时&#xff0c;变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形&#xff0c;变量之间是有一定的相关关系的&#xff0c;当两个变量之间有一定…

干货|Spring Cloud Bus 消息总线介绍

2019独角兽企业重金招聘Python工程师标准>>> 继上一篇 干货&#xff5c;Spring Cloud Stream 体系及原理介绍 之后&#xff0c;本期我们来了解下 Spring Cloud 体系中的另外一个组件 Spring Cloud Bus (建议先熟悉 Spring Cloud Stream&#xff0c;不然无法理解 Spr…

一类动词二类动词三类动词_基于http动词的完全无效授权技术

一类动词二类动词三类动词Authorization is a basic feature of modern web applications. It’s a mechanism of specifying access rights or privileges to resources according to user roles. In case of CMS like applications, it needs to be equipped with advanced l…