训练一个神经网络 能让她认得我

写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)

这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点意思的项目。

项目的github地址:github 喜欢的话就给个Star吧。

想要她认得我,就需要给她一些我的照片,让她记住我的人脸特征,为了让她区分我和其他人,还需要给她一些其他人的照片做参照,所以就需要两组数据集来让她学习,如果想让她多认识几个人,那多给她几组图片集学习就可以了。下面就开始让我们来搭建这个能认识我的"她"。

运行环境

下面为软件的运行搭建系统环境。

系统: window或linux

软件: python 3.x 、 tensorflow

python支持库:

tensorflow:

pip install tensorflow      #cpu版本
pip install rensorflow-gpu  #gpu版本,需要cuda与cudnn的支持,不清楚的可以选择cpu版

numpy:

pip install numpy

opencv:

pip install opencv-python

dlib:

pip install dlib

获取本人图片集

获取本人照片的方式当然是拍照了,我们需要通过程序来给自己拍照,如果你自己有照片,也可以用那些现成的照片,但前提是你的照片足够多。这次用到的照片数是10000张,程序运行后,得坐在电脑面前不停得给自己的脸摆各种姿势,这样可以提高训练后识别自己的成功率,在程序中加入了随机改变对比度与亮度的模块,也是为了提高照片样本的多样性。

程序中使用的是dlib来识别人脸部分,也可以使用opencv来识别人脸,在实际使用过程中,dlib的识别效果比opencv的好,但opencv识别的速度会快很多,获取10000张人脸照片的情况下,dlib大约花费了1小时,而opencv的花费时间大概只有20分钟。opencv可能会识别一些奇怪的部分,所以综合考虑之后我使用了dlib来识别人脸。

get_my_faces.py

import cv2
import dlib
import os
import sys
import randomoutput_dir = './my_faces'
size = 64if not os.path.exists(output_dir):os.makedirs(output_dir)# 改变图片的亮度与对比度
def relight(img, light=1, bias=0):w = img.shape[1]h = img.shape[0]#image = []for i in range(0,w):for j in range(0,h):for c in range(3):tmp = int(img[j,i,c]*light + bias)if tmp > 255:tmp = 255elif tmp < 0:tmp = 0img[j,i,c] = tmpreturn img#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)index = 1
while True:if (index <= 10000):print('Being processed picture %s' % index)# 从摄像头读取照片success, img = camera.read()# 转为灰度图片gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 使用detector进行人脸检测dets = detector(gray_img, 1)for i, d in enumerate(dets):x1 = d.top() if d.top() > 0 else 0y1 = d.bottom() if d.bottom() > 0 else 0x2 = d.left() if d.left() > 0 else 0y2 = d.right() if d.right() > 0 else 0face = img[x1:y1,x2:y2]# 调整图片的对比度与亮度, 对比度与亮度值都取随机数,这样能增加样本的多样性face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))face = cv2.resize(face, (size,size))cv2.imshow('image', face)cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face)index += 1key = cv2.waitKey(30) & 0xffif key == 27:breakelse:print('Finished!')break

在这里我也给出一个opencv来识别人脸的代码示例:

import cv2
import os
import sys
import randomout_dir = './my_faces'
if not os.path.exists(out_dir):os.makedirs(out_dir)# 改变亮度与对比度
def relight(img, alpha=1, bias=0):w = img.shape[1]h = img.shape[0]#image = []for i in range(0,w):for j in range(0,h):for c in range(3):tmp = int(img[j,i,c]*alpha + bias)if tmp > 255:tmp = 255elif tmp < 0:tmp = 0img[j,i,c] = tmpreturn img# 获取分类器
haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)n = 1
while 1:if (n <= 10000):print('It`s processing %s image.' % n)# 读帧success, img = camera.read()gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = haar.detectMultiScale(gray_img, 1.3, 5)for f_x, f_y, f_w, f_h in faces:face = img[f_y:f_y+f_h, f_x:f_x+f_w]face = cv2.resize(face, (64,64))'''if n % 3 == 1:face = relight(face, 1, 50)elif n % 3 == 2:face = relight(face, 0.5, 0)'''face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))cv2.imshow('img', face)cv2.imwrite(out_dir+'/'+str(n)+'.jpg', face)n+=1key = cv2.waitKey(30) & 0xffif key == 27:breakelse:break

获取其他人脸图片集

需要收集一个其他人脸的图片集,只要不是自己的人脸都可以,可以在网上找到,这里我给出一个我用到的图片集:

网站地址:http://vis-www.cs.umass.edu/lfw/

图片集下载:http://vis-www.cs.umass.edu/lfw/lfw.tgz

先将下载的图片集,解压到项目目录下的input_img目录下,也可以自己指定目录(修改代码中的input_dir变量)

接下来使用dlib来批量识别图片中的人脸部分,并保存到指定目录下

set_other_people.py

# -*- codeing: utf-8 -*-
import sys
import os
import cv2
import dlibinput_dir = './input_img'
output_dir = './other_faces'
size = 64if not os.path.exists(output_dir):os.makedirs(output_dir)#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()index = 1
for (path, dirnames, filenames) in os.walk(input_dir):for filename in filenames:if filename.endswith('.jpg'):print('Being processed picture %s' % index)img_path = path+'/'+filename# 从文件读取图片img = cv2.imread(img_path)# 转为灰度图片gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 使用detector进行人脸检测 dets为返回的结果dets = detector(gray_img, 1)#使用enumerate 函数遍历序列中的元素以及它们的下标#下标i即为人脸序号#left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离 #top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离for i, d in enumerate(dets):x1 = d.top() if d.top() > 0 else 0y1 = d.bottom() if d.bottom() > 0 else 0x2 = d.left() if d.left() > 0 else 0y2 = d.right() if d.right() > 0 else 0# img[y:y+h,x:x+w]face = img[x1:y1,x2:y2]# 调整图片的尺寸face = cv2.resize(face, (size,size))cv2.imshow('image',face)# 保存图片cv2.imwrite(output_dir+'/'+str(index)+'.jpg', face)index += 1key = cv2.waitKey(30) & 0xffif key == 27:sys.exit(0)

other-face

这个项目用到的图片数是10000张左右,如果是自己下载的图片集,控制一下图片的数量避免数量不足,或图片过多带来的内存不够与运行缓慢。

训练模型

有了训练数据之后,通过cnn来训练数据,就可以让她记住我的人脸特征,学习怎么认识我了。

train_faces.py

import tensorflow as tf
import cv2
import numpy as np
import os
import random
import sys
from sklearn.model_selection import train_test_splitmy_faces_path = './my_faces'
other_faces_path = './other_faces'
size = 64imgs = []
labs = []def getPaddingSize(img):h, w, _ = img.shapetop, bottom, left, right = (0,0,0,0)longest = max(h, w)if w < longest:tmp = longest - w# //表示整除符号left = tmp // 2right = tmp - leftelif h < longest:tmp = longest - htop = tmp // 2bottom = tmp - topelse:passreturn top, bottom, left, rightdef readData(path , h=size, w=size):for filename in os.listdir(path):if filename.endswith('.jpg'):filename = path + '/' + filenameimg = cv2.imread(filename)top,bottom,left,right = getPaddingSize(img)# 将图片放大, 扩充图片边缘部分img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0])img = cv2.resize(img, (h, w))imgs.append(img)labs.append(path)readData(my_faces_path)
readData(other_faces_path)
# 将图片数据与标签转换成数组
imgs = np.array(imgs)
labs = np.array([[0,1] if lab == my_faces_path else [1,0] for lab in labs])
# 随机划分测试集与训练集
train_x,test_x,train_y,test_y = train_test_split(imgs, labs, test_size=0.05, random_state=random.randint(0,100))
# 参数:图片数据的总数,图片的高、宽、通道
train_x = train_x.reshape(train_x.shape[0], size, size, 3)
test_x = test_x.reshape(test_x.shape[0], size, size, 3)
# 将数据转换成小于1的数
train_x = train_x.astype('float32')/255.0
test_x = test_x.astype('float32')/255.0print('train size:%s, test size:%s' % (len(train_x), len(test_x)))
# 图片块,每次取100张图片
batch_size = 100
num_batch = len(train_x) // batch_sizex = tf.placeholder(tf.float32, [None, size, size, 3])
y_ = tf.placeholder(tf.float32, [None, 2])keep_prob_5 = tf.placeholder(tf.float32)
keep_prob_75 = tf.placeholder(tf.float32)def weightVariable(shape):init = tf.random_normal(shape, stddev=0.01)return tf.Variable(init)def biasVariable(shape):init = tf.random_normal(shape)return tf.Variable(init)def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')def maxPool(x):return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')def dropout(x, keep):return tf.nn.dropout(x, keep)def cnnLayer():# 第一层W1 = weightVariable([3,3,3,32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32)b1 = biasVariable([32])# 卷积conv1 = tf.nn.relu(conv2d(x, W1) + b1)# 池化pool1 = maxPool(conv1)# 减少过拟合,随机让某些权重不更新drop1 = dropout(pool1, keep_prob_5)# 第二层W2 = weightVariable([3,3,32,64])b2 = biasVariable([64])conv2 = tf.nn.relu(conv2d(drop1, W2) + b2)pool2 = maxPool(conv2)drop2 = dropout(pool2, keep_prob_5)# 第三层W3 = weightVariable([3,3,64,64])b3 = biasVariable([64])conv3 = tf.nn.relu(conv2d(drop2, W3) + b3)pool3 = maxPool(conv3)drop3 = dropout(pool3, keep_prob_5)# 全连接层Wf = weightVariable([8*16*32, 512])bf = biasVariable([512])drop3_flat = tf.reshape(drop3, [-1, 8*16*32])dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf)dropf = dropout(dense, keep_prob_75)# 输出层Wout = weightVariable([512,2])bout = weightVariable([2])#out = tf.matmul(dropf, Wout) + boutout = tf.add(tf.matmul(dropf, Wout), bout)return outdef cnnTrain():out = cnnLayer()cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_))train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)# 比较标签是否相等,再求的所有数的平均值,tf.cast(强制转换类型)accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_, 1)), tf.float32))# 将loss与accuracy保存以供tensorboard使用tf.summary.scalar('loss', cross_entropy)tf.summary.scalar('accuracy', accuracy)merged_summary_op = tf.summary.merge_all()# 数据保存器的初始化saver = tf.train.Saver()with tf.Session() as sess:sess.run(tf.global_variables_initializer())summary_writer = tf.summary.FileWriter('./tmp', graph=tf.get_default_graph())for n in range(10):# 每次取128(batch_size)张图片for i in range(num_batch):batch_x = train_x[i*batch_size : (i+1)*batch_size]batch_y = train_y[i*batch_size : (i+1)*batch_size]# 开始训练数据,同时训练三个变量,返回三个数据_,loss,summary = sess.run([train_step, cross_entropy, merged_summary_op],feed_dict={x:batch_x,y_:batch_y, keep_prob_5:0.5,keep_prob_75:0.75})summary_writer.add_summary(summary, n*num_batch+i)# 打印损失print(n*num_batch+i, loss)if (n*num_batch+i) % 100 == 0:# 获取测试数据的准确率acc = accuracy.eval({x:test_x, y_:test_y, keep_prob_5:1.0, keep_prob_75:1.0})print(n*num_batch+i, acc)# 准确率大于0.98时保存并退出if acc > 0.98 and n > 2:saver.save(sess, './train_faces.model', global_step=n*num_batch+i)sys.exit(0)print('accuracy less 0.98, exited!')cnnTrain()

训练之后的数据会保存在当前目录下。

使用模型进行识别

最后就是让她认识我了,很简单,只要运行程序,让摄像头拍到我的脸,她就可以轻松地识别出是不是我了。

is_my_face.py

output = cnnLayer()  
predict = tf.argmax(output, 1)  saver = tf.train.Saver()  
sess = tf.Session()  
saver.restore(sess, tf.train.latest_checkpoint('.'))  def is_my_face(image):  res = sess.run(predict, feed_dict={x: [image/255.0], keep_prob_5:1.0, keep_prob_75: 1.0})  if res[0] == 1:  return True  else:  return False  #使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()cam = cv2.VideoCapture(0)  while True:  _, img = cam.read()  gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)dets = detector(gray_image, 1)if not len(dets):#print('Can`t get face.')cv2.imshow('img', img)key = cv2.waitKey(30) & 0xff  if key == 27:sys.exit(0)for i, d in enumerate(dets):x1 = d.top() if d.top() > 0 else 0y1 = d.bottom() if d.bottom() > 0 else 0x2 = d.left() if d.left() > 0 else 0y2 = d.right() if d.right() > 0 else 0face = img[x1:y1,x2:y2]# 调整图片的尺寸face = cv2.resize(face, (size,size))print('Is this my face? %s' % is_my_face(face))cv2.rectangle(img, (x2,x1),(y2,y1), (255,0,0),3)cv2.imshow('image',img)key = cv2.waitKey(30) & 0xffif key == 27:sys.exit(0)sess.close() 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/387216.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构03栈和队列

第三章栈和队列 STL栈&#xff1a;stack http://blog.csdn.net/weixin_37289816/article/details/54773495队列&#xff1a;queue http://blog.csdn.net/weixin_37289816/article/details/54773581priority_queue http://blog.csdn.net/weixin_37289816/article/details/5477…

树莓派pwm驱动好盈电调及伺服电机

本文讲述如何通过树莓派的硬件PWM控制好盈电调来驱动RC车子的前进后退&#xff0c;以及如何驱动伺服电机来控制车子转向。 1. 好盈电调简介 车子上的电调型号为&#xff1a;WP-10BLS-A-RTR&#xff0c;在好盈官网并没有搜到对应手册&#xff0c;但找到一份通用RC竞速车的电调使…

数据结构04串

第四章 串 STL&#xff1a;string http://blog.csdn.net/weixin_37289816/article/details/54716009计算机上非数值处理的对象基本上是字符串数据。 在不同类型的应用中&#xff0c;字符串具有不同的特点&#xff0c;要有效的实现字符串的处理&#xff0c;必须选用合适的存储…

CAS单点登录原理解析

CAS单点登录原理解析 SSO英文全称Single Sign On&#xff0c;单点登录。SSO是在多个应用系统中&#xff0c;用户只需要登录一次就可以访问所有相互信任的应用系统。CAS是一种基于http协议的B/S应用系统单点登录实现方案&#xff0c;认识CAS之前首先要熟悉http协议、Session与Co…

数据结构05数组和广义表

第五章 数组 和 广义表 数组和广义表可以看成是线性表在下述含义上的扩展&#xff1a;表中的数据元素本身也是一个数据结构。 5.1 数组的定义 n维数组中每个元素都受着n个关系的约束&#xff0c;每个元素都有一个直接后继元素。 可以把二维数组看成是这样一个定长线性表&…

数据结构06树和二叉树

第六章 树和二叉树 6.1 树的定义和基本术语 树 Tree 是n个结点的有限集。 任意一棵非空树中&#xff1a; &#xff08;1&#xff09;有且仅有一个特定的称为根&#xff08;root&#xff09;的结点&#xff1b; &#xff08;2&#xff09;当n>1时&#xff0c;其余结点可…

CountDownLatch,CyclicBarrier和Semaphore

在java 1.5中&#xff0c;提供了一些非常有用的辅助类来帮助我们进行并发编程&#xff0c;比如CountDownLatch&#xff0c;CyclicBarrier和Semaphore&#xff0c;今天我们就来学习一下这三个辅助类的用法。以下是本文目录大纲&#xff1a;一.CountDownLatch用法二.CyclicBarrie…

数据结构07排序

第十章内部排序 10.1 概述 排序就是把一组数据按关键字的大小有规律地排列。经过排序的数据更易于查找。 排序前KiKj&#xff0c;且Ki在前: 排序方法是稳定的&#xff0c;若排序后Ki在前&#xff1b; 排序方法是不稳定的&#xff0c;如排序后Kj在前。 分类&#xff1a; 内…

数据结构08查找

第九章 查找 另一种在实际应用中大量使用的数据结构--查找表。 所谓查找&#xff0c;即为在一个含有众多的数据元素的查找表中找出某个“特定的”数据元素。 查找表 search table 是由同一类型的数据元素构成的集合。集合中的数据元素之间存在着完全松散的关系&#xff0c;故…

下载Centos7 64位镜像

下载Centos7 64位镜像 1.打开Centos官网 打开Centos官方网站地址&#xff1a;https://www.centos.org/&#xff0c;点击Get CentOS Now 2.点击Minimal ISO镜像 Minimal ISO镜像&#xff0c;与DVD ISO镜像的差别有很多&#xff0c;这里只说两点 1.Minimal ISO类似于Windows的纯净…

Scala01入门

第1章 可伸展的语言 Scala应用范围广&#xff0c;从编写脚本&#xff0c;到建立大型系统。 运行在标准Java平台上&#xff0c;与Java库无缝交互。 更能发挥力量的地方&#xff1a;建立大型系统或可重用控件的架构。 将面向对象和函数式编程加入到静态类型语言。 在Scala中&a…

Java网络01基本网络概念

协议 Protocol&#xff1a;明确规则 &#xff08;1&#xff09;地址格式&#xff1b; &#xff08;2&#xff09;数据如何分包&#xff1b; ... TCP/IP四层模型&#xff1a; 应用层 HTTP SMTP POP IMAP 传输层 TCP UDP 网际层 IP 主机网络层 host to host layer 数模、…

Java网络02基本Web概念

URI Uniform Resource Identifier 同一资源标识符 以特定语法标识一个资源的字符串 绝对URI&#xff1a;URI模式模式特有部分 scheme:scheme-specific-part scheme分为&#xff1a; data file本地文件系统 ftp http telnet urn 统一资源名 scheme-specific-part为&am…

解决自建ca认证后浏览器警告

前一篇讲解了基本的建立证书的过程&#xff0c;但是建立后总是会在浏览器那里警告&#xff1a; 此链接不是私密链接 --谷歌浏览器 此证书颁发机构不可信 此证书不是这个网站的 --ie浏览器 总之证书是生成成功了&#xff0c;但是其中的内容填写错误了&a…

Java网络03流

网络程序所做的很大一部分工作只是输入和输出&#xff1a;从一个系统向另一个系统移动数据。 输出流 Java的基本输出流类是java.io.OutputStream: public abstract class OutputStream 这个类提供了写入数据所需的基本方法&#xff0c;包括&#xff1a; public abstract vo…

基于微信小程序开发的仿微信demo

(本文参考自github/liujians,地址:https://github.com/liujians/weApp) 作者声明&#xff1a; 基于微信小程序开发的仿微信demo 整合了ionic的样式库和weui的样式库 使用请查看使用必读! 更新日志请点击这里 目前功能 查看消息 网络请求获取数据&#xff08;download示例server…

解决idea 中web项目无法正常显示的问题

转载于:https://www.cnblogs.com/nulijiushimeili/p/10575364.html

分享一个前后端分离的web项目(vue+spring boot)

Github地址&#xff1a;https://github.com/smallsnail-wh 前端项目名为wh-web后端项目名为wh-server项目展示地址为我的github pages&#xff08;https://smallsnail-wh.github.io&#xff09;用户名&#xff1a;admin&#xff0c;密码admin&#xff08;第一次启动会比较慢&am…

部署php项目到linux

服务器&#xff1a;39.106.26.67rootBayou2009 数据库&#xff1a;rootbayou2009 项目文件夹路径&#xff1a;/home/www/项目文件夹名称&#xff1a;education.bayou-tech.cn 绑定域名&#xff1a;education.bayou-tech.cn 绑定域名&#xff1a; 用ftp把配置文件下班到windows修…

ZooKeeper安装配置

配置 1、在conf目录下创建一个配置文件zoo.cfg tickTime2000 dataDir.../zookeeper/data dataLogDir.../zookeeper/dataLog clientPort2181 initLimit5 syncLimit2 server.1server1:2888:3888 server.2server2:2888:3888 server.3server3:2888:3888 •tickTime&#…