主成分分析(PCA)原理详解_转载

一、PCA简介

1. 相关背景

      在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。

      因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。主成分分析与因子分析就属于这类降维的方法。

2. 问题描述
      下表1是某些学生的语文、数学、物理、化学成绩统计:

 

 

       首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系。那么一眼就能看出来,数学、物理、化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数学成绩拉的最开)。为什么一眼能看出来?因为坐标轴选对了!下面再看一组学生的数学、物理、化学、语文、历史、英语成绩统计,见表2,还能不能一眼看出来:

 

 

      数据太多了,以至于看起来有些凌乱!也就是说,无法直接看出这组数据的主成分,因为在坐标系下这组数据分布的很散乱。究其原因,是因为无法拨开遮住肉眼的迷雾~如果把这些数据在相应的空间中表示出来,也许你就能换一个观察角度找出主成分。如下图1所示:

 

 

      但是,对于更高维的数据,能想象其分布吗?就算能描述分布,如何精确地找到这些主成分的轴?如何衡量你提取的主成分到底占了整个数据的多少信息?所以,我们就要用到主成分分析的处理方法。

3. 数据降维
      为了说明什么是数据的主成分,先从数据降维说起。数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x',y',z',那么这组数据的表示只用x'和y'两个维度表示即可!当然了,如果想恢复原来的表示方式,那就得把这两个坐标之间的变换矩阵存下来。这样就能把数据维度降下来了!但是,我们要看到这个过程的本质,如果把这些数据按行或者按列排成一个矩阵,那么这个矩阵的秩就是2!这些数据之间是有相关性的,这些数据构成的过原点的向量的最大线性无关组包含2个向量,这就是为什么一开始就假设平面过原点的原因!那么如果平面不过原点呢?这就是数据中心化的缘故!将坐标原点平移到数据中心,这样原本不相关的数据在这个新坐标系中就有相关性了!有趣的是,三点一定共面,也就是说三维空间中任意三点中心化后都是线性相关的,一般来讲n维空间中的n个点一定能在一个n-1维子空间中分析!

    上一段文字中,认为把数据降维后并没有丢弃任何东西,因为这些数据在平面以外的第三个维度的分量都为0。现在,假设这些数据在z'轴有一个很小的抖动,那么我们仍然用上述的二维表示这些数据,理由是我们可以认为这两个轴的信息是数据的主成分,而这些信息对于我们的分析已经足够了,z'轴上的抖动很有可能是噪声,也就是说本来这组数据是有相关性的,噪声的引入,导致了数据不完全相关,但是,这些数据在z'轴上的分布与原点构成的夹角非常小,也就是说在z'轴上有很大的相关性,综合这些考虑,就可以认为数据在x',y' 轴上的投影构成了数据的主成分!

  课堂上老师谈到的特征选择的问题,其实就是要剔除的特征主要是和类标签无关的特征。而这里的特征很多是和类标签有关的,但里面存在噪声或者冗余。在这种情况下,需要一种特征降维的方法来减少特征数,减少噪音和冗余,减少过度拟合的可能性。

    PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。

二、PCA实例
      现在假设有一组数据如下:

 

 

      行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“learn”出现的TF-IDF,y是10篇文档中“study”出现的TF-IDF。

    第一步,分别求x和y的平均值,然后对于所有的样例,都减去对应的均值。这里x的均值是1.81,y的均值是1.91,那么一个样例减去均值后即为(0.69,0.49),得到

 

 

     第二步,求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

 

 

     这里只有x和y,求解得

 

 

     对角线上分别是x和y的方差,非对角线上是协方差。协方差是衡量两个变量同时变化的变化程度。协方差大于0表示x和y若一个增,另一个也增;小于0表示一个增,一个减。如果x和y是统计独立的,那么二者之间的协方差就是0;但是协方差是0,并不能说明x和y是独立的。协方差绝对值越大,两者对彼此的影响越大,反之越小。协方差是没有单位的量,因此,如果同样的两个变量所采用的量纲发生变化,它们的协方差也会产生树枝上的变化。

    第三步,求协方差的特征值和特征向量,得到

 

 

      上面是两个特征值,下面是对应的特征向量,特征值0.0490833989对应特征向量为,这里的特征向量都归一化为单位向量。

    第四步,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。

    这里特征值只有两个,我们选择其中最大的那个,这里是1.28402771,对应的特征向量是(-0.677873399, -0.735178656)T。

    第五步,将样本点投影到选取的特征向量上。假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(m*n),协方差矩阵是n*n,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

FinalData(10*1) = DataAdjust(10*2矩阵) x 特征向量(-0.677873399, -0.735178656)T

    得到的结果是

 

 

      这样,就将原始样例的n维特征变成了k维,这k维就是原始特征在k维上的投影。

    上面的数据可以认为是learn和study特征融合为一个新的特征叫做LS特征,该特征基本上代表了这两个特征。上述过程如下图2描述:

 

 

      正号表示预处理后的样本点,斜着的两条线就分别是正交的特征向量(由于协方差矩阵是对称的,因此其特征向量正交),最后一步的矩阵乘法就是将原始样本点分别往特征向量对应的轴上做投影。

    整个PCA过程貌似及其简单,就是求协方差的特征值和特征向量,然后做数据转换。但是有没有觉得很神奇,为什么求协方差的特征向量就是最理想的k维向量?其背后隐藏的意义是什么?整个PCA的意义是什么?

三、PCA推导
      先看下面这幅图:

 

 

      在第一部分中,我们举了一个学生成绩的例子,里面的数据点是六维的,即每个观测值是6维空间中的一个点。我们希望将6维空间用低维空间表示。

    先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一个椭圆形状的点阵,那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。

    上图中,u1就是主成分方向,然后在二维空间中取和u1方向正交的方向,就是u2的方向。则n个数据在u1轴的离散程度最大(方差最大),数据在u1上的投影代表了原始数据的绝大部分信息,即使不考虑u2,信息损失也不多。而且,u1、u2不相关。只考虑u1时,二维降为一维。

    椭圆的长短轴相差得越大,降维也越有道理。

1. 最大方差理论
      在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。如前面的图,样本在u1上的投影方差较大,在u2上的投影方差较小,那么可认为u2上的投影是由噪声引起的。

     因此我们认为,最好的k维特征是将n维样本点转换为k维后,每一维上的样本方差都很大。

     比如我们将下图中的5个点投影到某一维上,这里用一条过原点的直线表示(数据已经中心化):

 

 

    假设我们选择两条不同的直线做投影,那么左右两条中哪个好呢?根据我们之前的方差最大化理论,左边的好,因为投影后的样本点之间方差最大(也可以说是投影的绝对值之和最大)。

     计算投影的方法见下图5:

 

 

 

       图中,红色点表示样例,蓝色点表示在u上的投影,u是直线的斜率也是直线的方向向量,而且是单位向量。蓝色点是在u上的投影点,离原点的距离是<x,u>(即xTu或者uTx)。

2. 最小二乘法
     我们使用最小二乘法来确定各个主轴(主成分)的方向。

    对给定的一组数据(下面的阐述中,向量一般均指列向量):

       

 

    其数据中心位于:

      

 

   

    数据中心化(将坐标原点移到样本点的中心点):

        

 

    中心化后的数据在第一主轴u1方向上分布散的最开,也就是说在u1方向上的投影的绝对值之和最大(也可以说方差最大),计算投影的方法上面已经阐述,就是将x与u1做内积,由于只需要求u1的方向,所以设u1也是单位向量。

    在这里,也就是最大化下式:

       

 

    由矩阵代数相关知识可知,可以对绝对值符号项进行平方处理,比较方便。所以进而就是最大化下式:

        

 

    两个向量做内积,可以转化成矩阵乘法:

       

 

    所以目标函数可以表示为:

       

 

    括号里面就是矩阵乘法表示向量内积,由于列向量转置以后是行向量,行向量乘以列向量得到一个数,一个数的转置还是其本身,所以又可以将目标函数化为:

        

 

    去括号:

        

 

    又由于u1和i无关,可以拿到求和符外面,上式化简为:

       

 

    学过矩阵代数的同学可能已经发现了,上式括号里面求和后的结果,就相当于一个大矩阵乘以自身的转置,其中,这个大矩阵的形式如下:

       

 

    X矩阵的第i列就是xi

    于是有:

       

 

    所以目标函数最终化为:

       

 

    其中的就是一个二次型,

    我们假设的某一特征值为λ,对应的特征向量为ξ,有

       

 

    所以,是半正定的对称矩阵,即是半正定阵的二次型,由矩阵代数知识得出,目标函数存在最大值!

    下面我们求解最大值、取得最大值时u1的方向这两个问题。

    先解决第一个问题,对于向量x的二范数平方为:

       

 

    同样,目标函数也可以表示成映射后的向量的二范数平方:

       

 

    把二次型化成一个范数的形式,由于u1取单位向量,最大化目标函数的基本问题也就转化为:对一个矩阵,它对一个向量做变换,变换前后的向量的模长伸缩尺度如何才能最大?我们有矩阵代数中的定理知,向量经矩阵映射前后的向量长度之比的最大值就是这个矩阵的最大奇异值,即:

       

 

    式中,是矩阵A的最大奇异值(亦是矩阵A的二范数),它等于(或)的最大特征值开平方。

    针对本问题来说,是半正定对称阵,也就意味着它的特征值都大于等于0,且不同特征值对应的特征向量是正交的,构成所在空间的一组单位正交基。

    再解决第二个问题,对一般情况,设对称阵的n个特征值分别为:

      

 

    相应的单位特征向量为:

     

 

    任取一个向量x,用特征向量构成的空间中的这组基表示为:

      

 

    则:

     

 

    所以:

      

 

    针对第二个问题,我们取上式中的,目标函数取得最大值,也就是的最大特征值时,对应的特征向量的方向,就是第一主成分u1的方向!(第二主成分的方向为的第二大特征值对应的特征向量的方向,以此类推)。

    证明完毕。

    主成分所占整个信息的百分比可用下式计算:

 

 

    式中分母为所有奇异值平方和,分子为所选取的前k大奇异值平方和。

    有些研究工作表明,所选的主轴总长度占所有主轴长度之和的大约85% 即可,其实,这只是一个大体的说法,具体选多少个,要看实际情况而定。

3.意义
     PCA将n个特征降维到k个,可以用来进行数据压缩,例如100维的向量最后可以用10维来表示,那么压缩率为90%。同样图像处理领域的KL变换使用PCA做图像压缩,人脸检测和匹配。比如如下摘自另一篇博客上的Matlab实验结果:

 

 

 

 

 

 

可见测试样本为人脸的样本的重建误差显然小于非人脸的重建误差。

    另外PCA还可以联系奇异值分解(SVD),来用于预测矩阵中缺失的元素,可以应用到评分预测等实际项目中。详见后续SVD的博客。

一些pca的代码

https://files-cdn.cnblogs.com/files/henuliulei/face.7z

原文:https://blog.csdn.net/zhongkelee/article/details/44064401

转载于:https://www.cnblogs.com/henuliulei/p/10826646.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/386865.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac cnpm装包时提示Error: EACCES: permission denied解决办法

Cnpm装包时提示Error: EACCES: permission denied解决办法 2018年03月04日 09:31:51 miniminixu 阅读数&#xff1a;1598 版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/miniminixu/article/details/79434609 只需在cnpm …

特征点检测 FAST算法及代码详解

本文着重介绍了用于图像特征点检测的算法&#xff0c;FAST算法&#xff0c;以及使用matlab的实现。 FAST算法是一种拐点检测算法&#xff0c;其主要应用于提取图像中的特征点&#xff0c;在动态成像的一系列图像中追踪定位对象。众所周知&#xff0c;我们生活的世界是动态化的…

Python Email发送,通知业务完成

Email 发送 #!/usr/bin/python # -*- coding: UTF-8 -*- import base64 import smtplib from email.mime.text import MIMEText from email.header import Header from email.utils import formataddrdef crypt(source, key):from itertools import cycleresulttempcycle(key)f…

基于SpringCloud的分布式事务框架(LCN)

框架特点 支持各种基于spring的db框架 兼容springcloud、dubbo 使用简单&#xff0c;代码完全开源 基于切面的强一致性事务框架 高可用&#xff0c;模块可以依赖dubbo或springcloud的集群方式做集群化&#xff0c;TxManager也可以做集群化 使用示例 分布式事务发起方&#xf…

一文看懂计算机神经网络与梯度下降

1. 计算机神经网络与神经元 要理解神经网络中的梯度下降算法&#xff0c;首先我们必须清楚神经元的定义。如下图所示&#xff0c;每一个神经元可以由关系式yf(∑i1nwixib)y f(\sum_{i1}^nw_ix_i b)yf(∑i1n​wi​xi​b)来描述&#xff0c;其中X[x1,x2,...,xn]X [x_1,x_2,..…

vs2015web项目无法加载64位c++的dll,提示试图加载不正确的格式

vs2015无法加载64位c的dll&#xff0c;提示试图加载不正确的格式&#xff01; 开始用winform引用64位的c的dll&#xff0c;在项目的属性设置生成里面选择any cpu或者x64都可以成功! 但在web项目和接口里面运行就提示试图加载不正确的格式&#xff0c;想办法找了一天也没处理掉&…

使用Rancher搭建K8S测试环境

环境准备&#xff08;4台主机&#xff0c;Ubuntu16.04Docker1.12.6 SSH&#xff09;&#xff1a; rancher1 192.168.3.160 只做管理节点 node1 192.168.3.161 K8S的节点1 node2 192.168.3.162 K8S的节点2 node3 192.168.3.163 K8S的节点3 此时如…

Anaconda安装tensorflow报错问题解决方法

最近脱离了googlecolab想使用本地的anaconda进行机器学习课题的演练&#xff0c;在安装tensorflow时报错 : UnsatisfiableError: The following specifications were found。下面给出解决方法。 发现实际原因是由于anaconda的python环境&#xff0c;当前版本的tensorflow只能适…

5.07—018—周二

今日所学内容 一、模块 二、递归删除的思路 三、案例&#xff1a;跨文件夹移动文件 四、案例 递归遍历打印目标路径中所有的txt文件 五、项目开放周期 一、模块 1、与时间相关的模块 1&#xff09;time &#xff1a;时间 时间戳(timestamp)&#xff1a;time.time()  延迟线程…

机器学习模型中step与epoch,batch_size之间的关系

本文主要谈谈自己对step&#xff0c;epoch&#xff0c;batch_size这几个常见参数的理解。 最近在调试模型的时候&#xff0c;发现在使用keras.optimizer.adam时&#xff0c;模型在添加了新的一层2D卷积层后难以收敛&#xff0c;在不调整初始权重矩阵的情况下&#xff0c;想通过…

yml的mybatis的sql查看

yml的mybatis的sql查看 控制台输出结果:

Debian 安装 yum

sudo apt-get updatesudo apt-get install build-essentialsudo apt-get install yum转载于:https://www.cnblogs.com/baiqian/p/10840169.html

unity如何让canvas总是显示在所有层的最上方?

由于unity中的图层都是从上至下渲染的&#xff0c;那么在渲染的过程中&#xff0c;只需要将canvas所在的UI层的渲染优先级order排在其他层之后&#xff0c;就可以保证UI画面总是最后加载出来的了。 在canvas的inspector中修改order in layer 或者 sorting layer都可以实现这一…

FZU - 2037 -Maximum Value Problem(规律题)

Let’s start with a very classical problem. Given an array a[1…n] of positive numbers, if the value of each element in the array is distinct, how to find the maximum element in this array? You may write down the following pseudo code to solve this proble…

解决Feign接口调用有时候不好用的分析思路

很多架构师为了鉴权&#xff0c;会把controller带过来的header信息一股脑的利用feign的拦截器带入RequestTemplate&#xff0c;然后方便feign接口鉴权。这时候可能会带入其他的header信息&#xff0c;比如content-type&#xff0c;而有的feign接口是对特定对header信息有要求的…

关于同时可用git命令clone和TortoiseGit拉取代码不需要密码

工作需要在windows7下使用git分布式版本控制系统&#xff0c;需要同时可以在git命令行模式或TortoiseGit拉取代码而不需要每次输入密码。 这时候需要同时安装git和TortoiseGit。 git使用命令ssh-keygen -C “邮箱地址” -t rsa产生的密钥在TortoiseGit中不能用。TortoiseGit 使…

交叉验证 cross validation 与 K-fold Cross Validation K折叠验证

交叉验证&#xff0c;cross validation是机器学习中非常常见的验证模型鲁棒性的方法。其最主要原理是将数据集的一部分分离出来作为验证集&#xff0c;剩余的用于模型的训练&#xff0c;称为训练集。模型通过训练集来最优化其内部参数权重&#xff0c;再在验证集上检验其表现。…

这个太有意思了,程序员可以消遣娱乐

/***        ┏┓ ┏┓ *       ┏┛┻━━━━━━━┛┻┓ *       ┃       ┃*       ┃   ━   ┃ *       █████━█████ ┃*       ┃       ┃ *       ┃   ┻   ┃* …

第十一周总结

这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/computer-scienceclass4-2018/homework/3203 我在这个课程的目标是 理解与使用递归函数。 参考文献 基础题 2-1 宏定义“#define DIV(a, b) a/b”&#xff0c;经DIV(x …

softmax函数与交叉熵损失函数

本文主要介绍了当前机器学习模型中广泛应用的交叉熵损失函数与softmax激励函数。 这个损失函数主要应用于多分类问题&#xff0c;用于衡量预测值与实际值之间的相似程度。 交叉熵损失函数定义如下: LCE(y^,y∗)−∑i1Nclassesyi∗log(yi^)L_{CE}(\hat{y}, y^*) - \sum_{i1}^…