互斥量(mutex)

Linux中提供一把互斥锁mutex(也称之为互斥量)。每个线程在对资源操作前都尝试先加锁,成功加锁才能操作,操作结束解锁。资源还是共享的,线程间也还是竞争的,但通过“锁”就将资源的访问变成互斥操作,而后与时间有关的错误也不会再产生了。但,应注意:同一时刻,只能有一个线程持有该锁。

当A线程对某个全局变量加锁访问,B在访问前尝试加锁,拿不到锁,B阻塞。C线程不去加锁,而直接访问该全局变量,依然能够访问,但会出现数据混乱。所以,互斥锁实质上是操作系统提供的一把“建议锁”(又称“协同锁”,即不加锁也可以访问,但是不要这样做),建议程序中有多线程访问共享资源的时候使用该机制。但并没有强制限定。因此,即使有了mutex,如果有线程不按规则来访问数据,依然会造成数据混乱。Linux操作系统中,用户层面上编程使用的所有锁都是建议锁,不具有强制性,因此访问共享数据的所有线程(进程)都应该先加锁才能访问。

主要应用函数:

pthread_mutex_init函数         pthread_mutex_destroy函数

pthread_mutex_lock函数         pthread_mutex_trylock函数

pthread_mutex_unlock函数

以上5个函数的返回值都是:成功返回0 失败返回错误号。     

pthread_mutex_t 类型,其本质是一个结构体。为简化理解,应用时可忽略其实现细节,简单当成整数看待。pthread_mutex_t mutex; 变量mutex只有两种取值1、0。初始化完成后该值为1;加锁后变为0,解锁后又变为1。

1pthread_mutex_init函数

int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);

作用:初始化一个互斥锁(互斥量) ---> 初值可看作1。参数1:传出参数,调用时应传 &mutex;参数2:互斥量属性。是一个传入参数,通常传NULL,选用默认属性(线程间共享),可参考APUE.12.4同步属性

restrict关键字:只用于限制指针,告诉编译器,所有修改该指针指向内存中内容的操作,只能通过本指针完成。不能通过除本指针以外的其他变量或指针修改。

静态初始化:如果互斥锁 mutex 是静态分配的(定义在全局,或加static关键字修饰),可以直接使用宏进行初始化:pthead_mutex_t muetx = PTHREAD_MUTEX_INITIALIZER;动态初始化:局部变量必须采用动态初始化:pthread_mutex_init(&mutex, NULL)。

2pthread_mutex_destroy函数

int pthread_mutex_destroy(pthread_mutex_t *mutex);

作用:销毁一个互斥锁,即释放资源。

3pthread_mutex_lock函数

int pthread_mutex_lock(pthread_mutex_t *mutex);

作用:加锁。可理解为将mutex--(或-1)。

4pthread_mutex_unlock函数

int pthread_mutex_unlock(pthread_mutex_t *mutex);

作用:解锁。可理解为将mutex ++(或+1)。

5pthread_mutex_trylock函数

int pthread_mutex_trylock(pthread_mutex_t *mutex);

作用:尝试加锁。lock加锁失败会阻塞,等待锁释放。       trylock加锁失败直接返回错误号(如:EBUSY),不阻塞。因此,trylock函数要保证能够加锁成功需要采用轮询的方式(每隔一段时间去尝试加锁一次),与lock的区别就是不阻塞,类似于wait与waitpid函数。

lockunlock lock尝试加锁,如果加锁不成功,线程阻塞,阻塞到持有该互斥量的其他线程解锁为止。unlock主动解锁函数,同时将阻塞在该锁上的所有线程全部唤醒,至于哪个线程先被唤醒,取决于优先级、调度。默认:先阻塞、先唤醒。例如:T1 T2 T3 T4 使用一把mutex锁。T1加锁成功,其他线程均阻塞,直至T1解锁。T1解锁后,T2 T3 T4均被唤醒,并自动再次尝试加锁。

可假想mutex锁 init成功初值为1。 lock 功能是将mutex--。unlock将mutex++。

看如下程序:该程序是非常典型的,由于共享、竞争而没有加任何同步机制,导致产生于时间有关的错误,造成数据混乱:

//线程之间共享资源stdout(标准输出)

#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>pthread_mutex_t mutex;      //定义锁,全局变量void *tfn(void *arg)
{srand(time(NULL));while (1) {pthread_mutex_lock(&mutex);    //加锁printf("hello ");sleep(rand() % 3);       /*模拟长时间操作共享资源,导致cpu易主,产生与时间有关的错误*/printf("world\n");pthread_mutex_unlock(&mutex);   //解锁sleep(rand() % 3);}return NULL;
}int main(void)
{int flg = 5;pthread_t tid;srand(time(NULL));pthread_mutex_init(&mutex, NULL);   // mutex=1pthread_create(&tid, NULL, tfn, NULL);while (flg--) {pthread_mutex_lock(&mutex);  //加锁printf("HELLO ");sleep(rand() % 3);printf("WORLD\n");pthread_mutex_unlock(&mutex);   //解锁sleep(rand() % 3);}pthread_cancel(tid);pthread_join(tid, NULL);pthread_mutex_destroy(&mutex);   //销毁,注意不要忘记return 0;
}

//采用mutex锁机制的输出情况

[root@localhost 02_pthread_sync_test]# ./mutex

HELLO WORLD

hello world

HELLO WORLD

HELLO WORLD

hello world

HELLO WORLD

HELLO WORLD

hello world

hello world

//不采用mutex锁机制的输出情况(删除上述程序中的锁)

[root@localhost 02_pthread_sync_test]# ./mutex

HELLO hello world

WORLD

HELLO hello WORLD

HELLO world

hello world

WORLD

hello HELLO WORLD

HELLO world

WORLD

分析:

  1. 注意srand( time(NULL) );  rand( )函数的用法:产生非假随机数;
  2. 两个线程while中,两次printf前后,分别加lock和unlock。如果将unlock挪至第二个sleep函数后面,发现交替现象很难出现。这是因为线程在操作完共享资源后本应该立即解锁,但修改后,线程抱着锁睡眠。睡醒解锁后又立即加锁,这两个库函数本身不会阻塞。所以在这两行代码之间失去cpu的概率很小。因此,另外一个线程很难得到加锁的机会。因此:在访问共享资源前加锁,访问结束后立即解锁。锁的“粒度”应越小越好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/385281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

洗牌算法

参考资料&#xff1a; 1. 洗牌算法汇总以及测试洗牌程序的正确性 2. 三种洗牌算法shuffle

Bloom Filter算法

一、概念 Bloom Filter的中文翻译叫做布隆过滤器&#xff0c;是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法&#xff0c;缺点是有一定的误…

237. 删除链表中的节点

请编写一个函数&#xff0c;使其可以删除某个链表中给定的&#xff08;非末尾&#xff09;节点&#xff0c;你将只被给定要求被删除的节点。 现有一个链表 -- head [4,5,1,9]&#xff0c;它可以表示为: 示例 1: 输入: head [4,5,1,9], node 5 输出: [4,1,9] 解释: 给定你链表…

151. 翻转字符串里的单词

输入: " hello world! " 输出: "world! hello" 解释: 输入字符串可以在前面或者后面包含多余的空格&#xff0c;但是反转后的字符不能包括。 示例 3&#xff1a; 输入: "a good example" 输出: "example good a" 解释: 如果两个单…

进程间同步(互斥量、信号量)

进程间同步可以使用互斥量mutex&#xff08;互斥锁&#xff09;、信号量和文件锁。 进程间同步使用信号量&#xff1a; int sem_init(sem_t *sem, int pshared, unsigned int value); 用于进程间同步此时第二个参数不能取0了&#xff0c;取非0值用于进程间同步&#xff0c;一…

1059 Prime Factors(25 分)

Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N p​1​​​k​1​​​​p​2​​​k​2​​​​⋯p​m​​​k​m​​​​. Input Specification: Each input file contains one test case which gives a…

STL源码剖析

1. 当vector的内存用完了&#xff0c;它是如何动态扩展内存的&#xff1f;它是怎么释放内存的&#xff1f;用clear可以释放掉内存吗&#xff1f;是不是线程安全的&#xff1f; vector内存用完了&#xff0c;会以当前size大小重新申请2* size的内存&#xff0c;然后把原来的元素…

C++ 内存管理机制

内存分配方式 简介 在C中&#xff0c;内存分成5个区&#xff0c;他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈&#xff1a;在执行函数时&#xff0c;函数内局部变量的存储单元都可以在栈上创建&#xff0c;函数执行结束时这些存储单元自动被释放。栈内存…

哲学家用餐模型

分析&#xff1a; 为了避免死锁&#xff0c;做了如下规定&#xff1a;每个哲学家先拿自己左手边的筷子&#xff0c;然后再去拿右手边的筷子&#xff0c;如果不能同时得到两支筷子&#xff0c;则该哲学家放下手中已有的筷子。这种规定依然会因为振荡而产生死锁&#xff0c;例如…

【C++ Primer | 16】std::move和std::forward、完美转发

右值引用应该是C11引入的一个非常重要的技术&#xff0c;因为它是移动语义&#xff08;Move semantics&#xff09;与完美转发&#xff08;Perfect forwarding&#xff09;的基石&#xff1a; 移动语义&#xff1a;将内存的所有权从一个对象转移到另外一个对象&#xff0c;高效…

循环引用

1. 测试代码 #include <iostream> #include <memory> using namespace std;class B; class A { public:shared_ptr<B> pb;~A() { cout << "kill A\n";} };class B { public:shared_ptr<A> pa;~B() { cout << "kill B\n&q…

8. 字符串转换整数 (atoi)

请你来实现一个 atoi 函数&#xff0c;使其能将字符串转换成整数。 首先&#xff0c;该函数会根据需要丢弃无用的开头空格字符&#xff0c;直到寻找到第一个非空格的字符为止。 当我们寻找到的第一个非空字符为正或者负号时&#xff0c;则将该符号与之后面尽可能多的连续数字组…

【C++ Primer | 16】容器适配器全特化、偏特化

上面对模板的特化进行了总结。那模板的偏特化呢&#xff1f;所谓的偏特化是指提供另一份模板定义式&#xff0c;而其本身仍为模板&#xff1b;也就是说&#xff0c;针对模板参数更进一步的条件限制所设计出来的一个特化版本。这种偏特化的应用在STL中是随处可见的。比如 1.测试…

select、poll、epoll优缺点

select的缺点&#xff1a; 单个进程能够监视的文件描述符的数量存在最大限制&#xff0c;通常是1024&#xff0c;当然可以更改数量&#xff0c;但由于select采用轮询的方式扫描文件描述符&#xff0c;文件描述符数量越多&#xff0c;性能越差&#xff1b;内核/用户空间内存拷贝…

vector源码剖析

一、vector定义摘要&#xff1a; template <class T, class Alloc alloc> class vector { public:typedef T value_type;typedef value_type* pointer;typedef const value_type* const_pointer;typedef value_type* iterator;typ…

vs2013编译win-32位下的libevent-2.0.21-stable,debug版本

环境&#xff1a;win10&#xff08;64位&#xff09;vs2013 首先需要修改Makefile.nmake中的CFLAGS$(CFLAGS) /Ox /W3 /wd4996 /nologo注释掉&#xff0c;这一行是不带调试信息的。CFLAGS$(CFLAGS) /Od /W3 /wd4996 logo /Zi 替换这一行之后就可以自带调试信息。 打开vs2013的…

Leetcode 219. 存在重复元素 II

解题思路&#xff1a; class Solution { public:bool containsNearbyDuplicate(vector<int>& nums, int k) {unordered_map<int, int> cnt;for(int i0; i<nums.size(); i){if(cnt.find(nums[i]) ! cnt.end()){if(i - cnt[nums[i]] < k) return true;}cn…

Linux程序设计01:开发工具和开发平台

1.SecureCRT 1.1SecureCRT支持SSH*&#xff08;SSH1和SSH2&#xff09;&#xff0c;安装的过程不在赘述 1.2与SecureCRT相关的Linux命令 rz和sz是Linux同windows进行ZModem文件传输的命令行工具。 sz命令利用ZModem协议来从Linux服务器传送文件到本地&#xff0c;一次可以传送一…

fork、vfork、clone

1. 概念 写时复制技术最初产生于Unix系统&#xff0c;用于实现一种傻瓜式的进程创建&#xff1a;当发出fork( )系统调用时&#xff0c;内核原样复制父进程的整个地址空间并把复制的那一份分配给子进程。这种行为是非常耗时的&#xff0c;因为它需要&#xff1a; 为子进程的页…

Linux02进程内存管理

1.进程地址空间 1.1程序的结构与进程的结构 [rootlocalhost demo]# size testtext data bss dec hex filename 1193 492 16 1701 6a5 test 一个可执行程序包含三个部分&#xff1a; 代码段&#xff1a;主要存放指令&#xff0c;操作以及只读的常量数据例…