Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1k1×p2k2×⋯×pmkm.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N =
p1^
k1*
p2^
k2*
…*
pm^
km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^2*11*17*101*1291
#include<cstdio> #include<cmath> const int maxn = 100010;bool is_prime(int n){if(n == 1) return false;int sqr = (int)sqrt(1.0*n);for(int i = 2; i <= sqr; i++){if(n % i == 0) return false;}return true; }int prime[maxn],pNum = 0; void Find_prime(){for(int i = 1 ; i < maxn; i++){if(is_prime(i) == true){prime[pNum++] = i;}} }struct facot{int x,cnt; }fac[10]; int main(){Find_prime();int n;scanf("%d",&n);int num = 0;if(n == 1) printf("1=1");else{printf("%d=",n);int sqr = (int)sqrt(1.0*n);//printf("prime[0]");for(int i = 0; i < pNum ; i++){//printf("%d",i);if(n % prime[i] == 0){fac[num].x = prime[i];fac[num].cnt = 0;while(n % prime[i] == 0){fac[num].cnt++;n /= prime[i];}num++;}if(n == 1) break;}if(n != 1){fac[num].x = n;fac[num].cnt = 1;}//printf("1\n");for(int i = 0; i < num; i++){if(i > 0) printf("*");printf("%d",fac[i].x);if(fac[i].cnt > 1) printf("^%d",fac[i].cnt);} }return 0; }