C++ 内存管理机制

内存分配方式

简介

在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。

  • 栈:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
  • 堆:就是那些由 new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
  • 自由存储区:就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。
  • 全局/静态存储区:全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
  • 常量存储区:这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改。

明确区分堆与栈

堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
首先,我们举一个例子:

void f() { int* p=new int[5]; }

这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中。

堆和栈究竟有什么区别

  好了,我们回到我们的主题:堆和栈究竟有什么区别?
  主要的区别由以下几点:
  (1). 管理方式不同
  (2). 空间大小不同
  (3). 能否产生碎片不同
  (4). 生长方向不同
  (5). 分配方式不同
  (6). 分配效率不同

  • 管理方式不同:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak
  • 空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:

  打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit
  注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
  碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
  生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
  分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
  分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
  从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
  虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
  无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)

C++中内存泄漏的几种情况

1. 在类的构造函数和析构函数中没有匹配的调用new和delete函数

两种情况下会出现这种内存泄露:一是在堆里创建了对象占用了内存,但是没有显示地释放对象占用的内存;二是在类的构造函数中动态的分配了内存,但是在析构函数中没有释放内存或者没有正确的释放内存

2. 在释放对象数组时在delete中没有使用方括号 

8. 没有将基类的析构函数定义为虚函数

当父类指针指向子类对象时,如果基类的析构函数不是virtual,那么子类的析构函数将不会被调用,子类的资源没有正确是释放,因此造成内存泄露。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/385273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哲学家用餐模型

分析: 为了避免死锁,做了如下规定:每个哲学家先拿自己左手边的筷子,然后再去拿右手边的筷子,如果不能同时得到两支筷子,则该哲学家放下手中已有的筷子。这种规定依然会因为振荡而产生死锁,例如…

【C++ Primer | 16】std::move和std::forward、完美转发

右值引用应该是C11引入的一个非常重要的技术,因为它是移动语义(Move semantics)与完美转发(Perfect forwarding)的基石: 移动语义:将内存的所有权从一个对象转移到另外一个对象,高效…

循环引用

1. 测试代码 #include <iostream> #include <memory> using namespace std;class B; class A { public:shared_ptr<B> pb;~A() { cout << "kill A\n";} };class B { public:shared_ptr<A> pa;~B() { cout << "kill B\n&q…

8. 字符串转换整数 (atoi)

请你来实现一个 atoi 函数&#xff0c;使其能将字符串转换成整数。 首先&#xff0c;该函数会根据需要丢弃无用的开头空格字符&#xff0c;直到寻找到第一个非空格的字符为止。 当我们寻找到的第一个非空字符为正或者负号时&#xff0c;则将该符号与之后面尽可能多的连续数字组…

【C++ Primer | 16】容器适配器全特化、偏特化

上面对模板的特化进行了总结。那模板的偏特化呢&#xff1f;所谓的偏特化是指提供另一份模板定义式&#xff0c;而其本身仍为模板&#xff1b;也就是说&#xff0c;针对模板参数更进一步的条件限制所设计出来的一个特化版本。这种偏特化的应用在STL中是随处可见的。比如 1.测试…

select、poll、epoll优缺点

select的缺点&#xff1a; 单个进程能够监视的文件描述符的数量存在最大限制&#xff0c;通常是1024&#xff0c;当然可以更改数量&#xff0c;但由于select采用轮询的方式扫描文件描述符&#xff0c;文件描述符数量越多&#xff0c;性能越差&#xff1b;内核/用户空间内存拷贝…

vector源码剖析

一、vector定义摘要&#xff1a; template <class T, class Alloc alloc> class vector { public:typedef T value_type;typedef value_type* pointer;typedef const value_type* const_pointer;typedef value_type* iterator;typ…

vs2013编译win-32位下的libevent-2.0.21-stable,debug版本

环境&#xff1a;win10&#xff08;64位&#xff09;vs2013 首先需要修改Makefile.nmake中的CFLAGS$(CFLAGS) /Ox /W3 /wd4996 /nologo注释掉&#xff0c;这一行是不带调试信息的。CFLAGS$(CFLAGS) /Od /W3 /wd4996 logo /Zi 替换这一行之后就可以自带调试信息。 打开vs2013的…

Leetcode 219. 存在重复元素 II

解题思路&#xff1a; class Solution { public:bool containsNearbyDuplicate(vector<int>& nums, int k) {unordered_map<int, int> cnt;for(int i0; i<nums.size(); i){if(cnt.find(nums[i]) ! cnt.end()){if(i - cnt[nums[i]] < k) return true;}cn…

Linux程序设计01:开发工具和开发平台

1.SecureCRT 1.1SecureCRT支持SSH*&#xff08;SSH1和SSH2&#xff09;&#xff0c;安装的过程不在赘述 1.2与SecureCRT相关的Linux命令 rz和sz是Linux同windows进行ZModem文件传输的命令行工具。 sz命令利用ZModem协议来从Linux服务器传送文件到本地&#xff0c;一次可以传送一…

fork、vfork、clone

1. 概念 写时复制技术最初产生于Unix系统&#xff0c;用于实现一种傻瓜式的进程创建&#xff1a;当发出fork( )系统调用时&#xff0c;内核原样复制父进程的整个地址空间并把复制的那一份分配给子进程。这种行为是非常耗时的&#xff0c;因为它需要&#xff1a; 为子进程的页…

Linux02进程内存管理

1.进程地址空间 1.1程序的结构与进程的结构 [rootlocalhost demo]# size testtext data bss dec hex filename 1193 492 16 1701 6a5 test 一个可执行程序包含三个部分&#xff1a; 代码段&#xff1a;主要存放指令&#xff0c;操作以及只读的常量数据例…

epoll

开发高性能网络程序时&#xff0c;windows开发者们言必称iocp&#xff0c;linux开发者们则言必称epoll。大家都明白epoll是一种IO多路复用技术&#xff0c;可以非常高效的处理数以百万计的socket句柄&#xff0c;比起以前的select和poll效率高大发了。我们用起epoll来都感觉挺爽…

剑指offer目录

序号题目1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

基于升序链表的定时器

#ifndef LST_TIMER#define LST_TIMER#include <time.h>#define BUFFER_SIZE 64class util_timer;//用户数据结构&#xff1a;客户端地址、客户端的socket、socket文件描述符、读缓存和定时器struct client_data{sockaddr_in address;int sockfd;char buf[ BUFFER_SIZE ];…

SIGCHLD信号使用和注意事项

1.SIGCHLD简介 SIGCHILD是指在一个进程终止或者停止时&#xff0c;将SIGCHILD信号发送给其父进程&#xff0c;按照系统默认将忽略此信号&#xff0c;如果父进程希望被告知其子系统的这种状态&#xff0c;则应捕捉此信号。注意&#xff1a;SIGCLD信号与其长得非常相似。SIGCLD是…

08-图7 公路村村通 (30 分

现有村落间道路的统计数据表中&#xff0c;列出了有可能建设成标准公路的若干条道路的成本&#xff0c;求使每个村落都有公路连通所需要的最低成本。 输入格式: 输入数据包括城镇数目正整数N&#xff08;≤&#xff09;和候选道路数目M&#xff08;≤&#xff09;&#xff1b;随…

【Leetcode】33. 搜索旋转排序数组

假设按照升序排序的数组在预先未知的某个点上进行了旋转。 ( 例如&#xff0c;数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。 搜索一个给定的目标值&#xff0c;如果数组中存在这个目标值&#xff0c;则返回它的索引&#xff0c;否则返回 -1 。 你可以假设数组中不存在重…

08-图9 关键活动 (30 分

假定一个工程项目由一组子任务构成&#xff0c;子任务之间有的可以并行执行&#xff0c;有的必须在完成了其它一些子任务后才能执行。“任务调度”包括一组子任务、以及每个子任务可以执行所依赖的子任务集。 比如完成一个专业的所有课程学习和毕业设计可以看成一个本科生要完成…

【Leetocde | 10 】54. 螺旋矩阵

解题代码&#xff1a; class Solution { public:vector<int> spiralOrder(vector<vector<int>>& matrix) {if (matrix.empty() || matrix[0].empty()) return {};int m matrix.size(), n matrix[0].size();vector<int> res;int up 0, down m …