数据结构(六)二叉树的遍历(递归非递归方法)
一、递归方法
1.先序遍历
void PreOrder(BiTree T)
{visit(T);PreOrder(T->LChild)PreOrder(T->RChild)
}
2.先序遍历
void PreOrder(BiTree T)
{PreOrder(T->LChild)visit(T);PreOrder(T->RChild)
}
3.先序遍历
void PreOrder(BiTree T)
{PreOrder(T->LChild)PreOrder(T->RChild)visit(T);
}
二、非递归方法
非递归的方法我们主要采用栈的方法,先进后出
1.中序遍历
void MidSearch01(BiTree T)
{stack<BitTNode*> p;while (T || !p.empty()){if (T){p.push(T);T = T->lchild;}else{T = p.top();cout << T->data << "\t";p.pop();T = T->rchild;}}}
2.先序遍历
//前序遍历(非递归)void PreSearch01(BiTree T)
{stack<BitTNode*> p;while (T || !p.empty()){if (T){cout << T->data << "\t";p.push(T);T = T->lchild;}else{T= p.top();p.pop();T = T->rchild;}}
}
3.后序遍历
后序遍历相对于前中序遍历要麻烦一些
BitTNode* r = NULL;//标记位置
//后序遍历(非递归)
void PostSearch01(BiTree T)
{stack<BitTNode*> p;while (T || !p.empty()){if (T){p.push(T);T = T->lchild;}else{T = p.top();if (T->rchild && T->rchild != r){T = T->rchild;p.push(T);T = T->lchild;}else{p.pop();cout << T->data << "\t";r = T;T = NULL;}}}}
4.层次遍历
//层次遍历
void LevelOrder(BiTree T)
{queue<BitTNode*> q;q.push(T);while (!q.empty()){T = q.front();q.pop();cout << T->data << "\t";if (T->lchild != NULL){q.push(T->lchild);}if (T->rchild != NULL){q.push(T->rchild);}}}