题意:
建设一座大桥,在桥上建若干个塔,塔高为H,相邻两塔间的距离不能超过D,桥长度为B,线的总长度为L,桥之间的绳索为对称抛物线,问建最少塔的时候的线索的最下端的离地高度y
思路:
仔细分析一下,不难发现,只要求得抛物线在y轴的长度h,那么所求即为H-h,而求解这一段实际上是求解一个函数f(D1,L1)=h的方程,其中D1为两个塔间的间距,L1为该抛物线的曲线长度,这两个量极易容易求出,而这又是一个关于抛物线的二次函数,所以很容易二分枚举并积分来调整长度。
code:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;double a;
double F(double x){return sqrt(1+4*a*a*x*x);
}
double simpson(double a,double b){double c=a+(b-a)/2;return (F(a)+4*F(c)+F(b))*(b-a)/6;
}
double asr(double a,double b,double eps,double A){double c=a+(b-a)/2;double L=simpson(a,c),R=simpson(c,b);if (fabs(L+R-A)<=15*eps) return L+R+(L+R-A)/15;return asr(a,c,eps/2,L)+asr(c,b,eps/2,R);
}
double asr(double a,double b,double eps){return asr(a,b,eps,simpson(a,b));
}
double asr_len(double w,double h){a=4.0*h/(w*w);return asr(0,w/2,1e-5)*2;
}
int main()
{int T;scanf("%d",&T);for (int ca=1;ca<=T;ca++){double D,H,B,L;scanf("%lf%lf%lf%lf",&D,&H,&B,&L);int n=(B+D-1)/D;double D1=(double)B/n;double L1=(double)L/n;double x=0,y=H;while (y-x>1e-5){double m=x+(y-x)/2;if (asr_len(D1,m)<L1) x=m;else y=m;}if (ca>1) puts("");printf("Case %d:\n%.2f\n",ca,H-x);}
}