原题链接在这里:https://leetcode.com/problems/subsets/
题目:
Given a set of distinct integers, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3]
, a solution is:
[[3],[1],[2],[1,2,3],[1,3],[2,3],[1,2],[] ]
题解:
类似Permutations, Combination Sum,Palindrome Partitioning. 都是backtracking. dfs时把现有item copy后加进res. item加上当前nums元素继续dfs.
Time Complexity: exponential. Space: O(nums.length). stack space.
AC Java:
1 class Solution { 2 public List<List<Integer>> subsets(int[] nums) { 3 List<List<Integer>> res = new ArrayList<List<Integer>>(); 4 Arrays.sort(nums); 5 dfs(nums, 0, new ArrayList<Integer>(), res); 6 return res; 7 } 8 9 private void dfs(int [] nums, int start, List<Integer> item, List<List<Integer>> res){ 10 res.add(new ArrayList<Integer>(item)); 11 for(int i = start; i<nums.length; i++){ 12 item.add(nums[i]); 13 dfs(nums, i+1, item, res); 14 item.remove(item.size()-1); 15 } 16 } 17 }
Iteration时, 取res中现有list,每个list都加新的元素nums[i]然后再放回res中,同时保留原有list. 从[]开始一次加一个新元素。
Note: 内层for loop 的size 一定要提前提取出来,不能在内层for中现提取,因为res的size一直在变.
Time Complexity: exponential. Space: O(res.size()).
AC Java:
1 public class Solution { 2 public List<List<Integer>> subsets(int[] nums) { 3 List<List<Integer>> res = new ArrayList<List<Integer>>(); 4 if(nums == null || nums.length == 0){ 5 return res; 6 } 7 //res 中加入 [] 8 res.add(new ArrayList<Integer>()); 9 //保证non-descending order 10 Arrays.sort(nums); 11 12 for(int i = 0; i<nums.length; i++){ 13 //这里要注意,必须提前把size提取出来,不能把提取过程直接嵌入到下面的for语句中 14 //因为res的size会在下面语句中一直变化 15 int size = res.size(); 16 for(int j = 0; j<size; j++){ 17 List<Integer> newItem = new ArrayList<Integer>(res.get(j)); 18 newItem.add(nums[i]); 19 res.add(newItem); 20 } 21 } 22 return res; 23 } 24 }
进阶题是Subsets II.