PyTorch翻译官网教程-NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL RNN

官网链接

NLP From Scratch: Classifying Names with a Character-Level RNN — PyTorch Tutorials 2.0.1+cu117 documentation

使用CHARACTER-LEVEL RNN 对名字分类

我们将建立和训练一个基本的字符级递归神经网络(RNN)来分类单词。本教程以及另外两个“from scratch”的自然语言处理(NLP)教程 NLP From Scratch: Generating Names with a Character-Level RNN NLP From Scratch: Translation with a Sequence to Sequence Network and Attention,演示如何预处理数据以建立NLP模型。特别是,这些教程没有使用torchtext的许多便利功能,因此您可以看到如何简单使用预处理模型NLP。

字符级RNN将单词作为一系列字符来读取 ,每一步输出一个预测和“隐藏状态”,将之前的隐藏状态输入到下一步。我们把最后的预测作为输出,即这个词属于哪个类。

具体来说,我们将训练来自18种语言的几千个姓氏,并根据拼写来预测一个名字来自哪种语言:

$ python predict.py Hinton
(-0.47) Scottish
(-1.52) English
(-3.57) Irish$ python predict.py Schmidhuber
(-0.19) German
(-2.48) Czech
(-2.68) Dutch

建议准备

在开始本教程之前,建议您安装PyTorch,并对Python编程语言和张量有基本的了解:

  • PyTorch 有关安装说明
  • Deep Learning with PyTorch: A 60 Minute Blitz 开始使用PyTorch并学习张量的基础知识
  • Learning PyTorch with Examples 使用概述
  • PyTorch for Former Torch Users 如果您是前Lua Torch用户

了解rnn及其工作原理也很有用:

  • The Unreasonable Effectiveness of Recurrent Neural Networks 展示了一些现实生活中的例子
  • Understanding LSTM Networks 是专门关于LSTMs的,但也有关于RNNs的信息

准备数据

从这里下载数据并将其解压缩到当前目录。here

data/names”目录下包含18个文本文件,文件名为“[Language].txt”。每个文件包含一堆名称,每行一个名称,大多数是罗马化的(但我们仍然需要从Unicode转换为ASCII)。

我们最终会得到一个包含每种语言名称列表的字典,{language: [names ...]}。通用变量“category”和“line”(在本例中表示语言和名称)用于以后的可扩展性。

from io import open
import glob
import osdef findFiles(path): return glob.glob(path)print(findFiles('data/names/*.txt'))import unicodedata
import stringall_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)# Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):return ''.join(c for c in unicodedata.normalize('NFD', s)if unicodedata.category(c) != 'Mn'and c in all_letters)print(unicodeToAscii('Ślusàrski'))# Build the category_lines dictionary, a list of names per language
category_lines = {}
all_categories = []# Read a file and split into lines
def readLines(filename):lines = open(filename, encoding='utf-8').read().strip().split('\n')return [unicodeToAscii(line) for line in lines]for filename in findFiles('data/names/*.txt'):category = os.path.splitext(os.path.basename(filename))[0]all_categories.append(category)lines = readLines(filename)category_lines[category] = linesn_categories = len(all_categories)

输出

['data/names/Arabic.txt', 'data/names/Chinese.txt', 'data/names/Czech.txt', 'data/names/Dutch.txt', 'data/names/English.txt', 'data/names/French.txt', 'data/names/German.txt', 'data/names/Greek.txt', 'data/names/Irish.txt', 'data/names/Italian.txt', 'data/names/Japanese.txt', 'data/names/Korean.txt', 'data/names/Polish.txt', 'data/names/Portuguese.txt', 'data/names/Russian.txt', 'data/names/Scottish.txt', 'data/names/Spanish.txt', 'data/names/Vietnamese.txt']
Slusarski

现在我们有了category_lines,这是一个将每个类别(语言)映射到行(名称)列表的字典。我们还记录了all_categories(只是一个语言列表)和n_categories,以供以后参考。

print(category_lines['Italian'][:5])

输出

['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']

把名字变成张量

现在我们已经组织好了所有的名字,我们需要把它们变成张量来使用它们。

为了表示单个字母,我们使用大小为<1 x n_letters> 的 “one-hot vector”。一个独热向量被0填充,除了当前字母所以处是1。例如:"b" = <0 1 0 0 0 ...>.

为了组成一个单词,我们将一堆这样的单词连接到一个二维矩阵中<line_length x 1 x n_letters>.

额外的1维度是因为PyTorch假设所有的东西都是分批的——我们在这里只是使用1的批大小。

import torch# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(letter):return all_letters.find(letter)# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def letterToTensor(letter):tensor = torch.zeros(1, n_letters)tensor[0][letterToIndex(letter)] = 1return tensor# Turn a line into a <line_length x 1 x n_letters>,
# or an array of one-hot letter vectors
def lineToTensor(line):tensor = torch.zeros(len(line), 1, n_letters)for li, letter in enumerate(line):tensor[li][0][letterToIndex(letter)] = 1return tensorprint(letterToTensor('J'))print(lineToTensor('Jones').size())

输出

tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0.]])
torch.Size([5, 1, 57])

创建网络

在autograd之前,在Torch中创建循环神经网络涉及到在几个时间步上克隆一层的参数。图层包含隐藏状态和梯度,现在完全由图形本身处理。这意味着你可以以一种非常“纯粹”的方式实现RNN,作为常规的前馈层。

这个RNN模块(主要是从the PyTorch for Torch users tutorial复制的)只有2个线性层,在输入和隐藏状态上操作,在输出之后有一个LogSoftmax层。

import torch.nn as nnclass RNN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.i2h = nn.Linear(input_size + hidden_size, hidden_size)self.h2o = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=1)def forward(self, input, hidden):combined = torch.cat((input, hidden), 1)hidden = self.i2h(combined)output = self.h2o(hidden)output = self.softmax(output)return output, hiddendef initHidden(self):return torch.zeros(1, self.hidden_size)n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

为了运行这个网络的一个步骤,我们需要传递一个输入(在我们的例子中,是当前字母的张量)和一个先前的隐藏状态(我们一开始将其初始化为零)。我们将返回输出(每种语言的概率)和下一个隐藏状态(我们将其保留到下一步)。

input = letterToTensor('A')
hidden = torch.zeros(1, n_hidden)output, next_hidden = rnn(input, hidden)

为了提高效率,我们不想为每一步都创建一个新的张量,所以我们将使用lineToTensor而不是letterToTensor并使用切片。这可以通过预计算张量批次来进一步优化。

input = lineToTensor('Albert')
hidden = torch.zeros(1, n_hidden)output, next_hidden = rnn(input[0], hidden)
print(output)

输出

tensor([[-2.9083, -2.9270, -2.9167, -2.9590, -2.9108, -2.8332, -2.8906, -2.8325,-2.8521, -2.9279, -2.8452, -2.8754, -2.8565, -2.9733, -2.9201, -2.8233,-2.9298, -2.8624]], grad_fn=<LogSoftmaxBackward0>)

正如您所看到的,输出是一个<1 x n_categories> 张量,其中每个项目是该类别的可能性(越高越有可能)。

训练

训练准备

在开始训练之前,我们应该编写一些辅助函数。首先是解释网络的输出,我们知道这是每个类别的可能性。我们可以用Tensor.topk得到最大值的索引:

def categoryFromOutput(output):top_n, top_i = output.topk(1)category_i = top_i[0].item()return all_categories[category_i], category_iprint(categoryFromOutput(output))

输出

('Scottish', 15)

我们还需要一种快速获取训练示例(名称及其语言)的方法:

import randomdef randomChoice(l):return l[random.randint(0, len(l) - 1)]def randomTrainingExample():category = randomChoice(all_categories)line = randomChoice(category_lines[category])category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)line_tensor = lineToTensor(line)return category, line, category_tensor, line_tensorfor i in range(10):category, line, category_tensor, line_tensor = randomTrainingExample()print('category =', category, '/ line =', line)

输出

category = Chinese / line = Hou
category = Scottish / line = Mckay
category = Arabic / line = Cham
category = Russian / line = V'Yurkov
category = Irish / line = O'Keeffe
category = French / line = Belrose
category = Spanish / line = Silva
category = Japanese / line = Fuchida
category = Greek / line = Tsahalis
category = Korean / line = Chang

训练网络

现在训练这个网络所需要做的就是给它看一堆例子,让它猜测,然后告诉它是否错了。

对于损失函数nn.NLLLoss是合适的,因为RNN的最后一层是nn.LogSoftmax.

criterion = nn.NLLLoss()

每个训练循环将:

  • 创建输入张量和目标张量
  • 创建一个零初始隐藏状态
  • 读取每个字母
    • 为下一个字母保存隐藏状态
  • 将最终输出与目标进行比较
  • 反向传播
  • 返回输出和损失
learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learndef train(category_tensor, line_tensor):hidden = rnn.initHidden()rnn.zero_grad()for i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)loss = criterion(output, category_tensor)loss.backward()# Add parameters' gradients to their values, multiplied by learning ratefor p in rnn.parameters():p.data.add_(p.grad.data, alpha=-learning_rate)return output, loss.item()

现在我们只需要用一堆例子来运行它。由于train函数返回输出和损失,我们可以打印它的猜测并跟踪损失以便绘制。由于有1000个示例,我们只打印每个print_every示例,并取损失的平均值。

import time
import mathn_iters = 100000
print_every = 5000
plot_every = 1000# Keep track of losses for plotting
current_loss = 0
all_losses = []def timeSince(since):now = time.time()s = now - sincem = math.floor(s / 60)s -= m * 60return '%dm %ds' % (m, s)start = time.time()for iter in range(1, n_iters + 1):category, line, category_tensor, line_tensor = randomTrainingExample()output, loss = train(category_tensor, line_tensor)current_loss += loss# Print ``iter`` number, loss, name and guessif iter % print_every == 0:guess, guess_i = categoryFromOutput(output)correct = '✓' if guess == category else '✗ (%s)' % categoryprint('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))# Add current loss avg to list of lossesif iter % plot_every == 0:all_losses.append(current_loss / plot_every)current_loss = 0

输出

5000 5% (0m 33s) 2.6379 Horigome / Japanese ✓
10000 10% (1m 5s) 2.0172 Miazga / Japanese ✗ (Polish)
15000 15% (1m 39s) 0.2680 Yukhvidov / Russian ✓
20000 20% (2m 12s) 1.8239 Mclaughlin / Irish ✗ (Scottish)
25000 25% (2m 45s) 0.6978 Banh / Vietnamese ✓
30000 30% (3m 18s) 1.7433 Machado / Japanese ✗ (Portuguese)
35000 35% (3m 51s) 0.0340 Fotopoulos / Greek ✓
40000 40% (4m 23s) 1.4637 Quirke / Irish ✓
45000 45% (4m 57s) 1.9018 Reier / French ✗ (German)
50000 50% (5m 30s) 0.9174 Hou / Chinese ✓
55000 55% (6m 2s) 1.0506 Duan / Vietnamese ✗ (Chinese)
60000 60% (6m 35s) 0.9617 Giang / Vietnamese ✓
65000 65% (7m 9s) 2.4557 Cober / German ✗ (Czech)
70000 70% (7m 42s) 0.8502 Mateus / Portuguese ✓
75000 75% (8m 14s) 0.2750 Hamilton / Scottish ✓
80000 80% (8m 47s) 0.7515 Maessen / Dutch ✓
85000 85% (9m 20s) 0.0912 Gan / Chinese ✓
90000 90% (9m 53s) 0.1190 Bellomi / Italian ✓
95000 95% (10m 26s) 0.0137 Vozgov / Russian ✓
100000 100% (10m 59s) 0.7808 Tong / Vietnamese ✓

绘制结果

绘制all_losses的历史损失图显示了网络的学习情况:

import matplotlib.pyplot as plt
import matplotlib.ticker as tickerplt.figure()
plt.plot(all_losses)

输出

[<matplotlib.lines.Line2D object at 0x7f16606095a0>]

评估结果

为了了解网络在不同类别上的表现如何,我们将创建一个混淆矩阵,表示网络猜测(列)的每种语言(行)。为了计算混淆矩阵,使用evaluate(),在网络中运行一堆样本,这与 train() 去掉反向传播相同。

# Keep track of correct guesses in a confusion matrix
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000# Just return an output given a line
def evaluate(line_tensor):hidden = rnn.initHidden()for i in range(line_tensor.size()[0]):output, hidden = rnn(line_tensor[i], hidden)return output# Go through a bunch of examples and record which are correctly guessed
for i in range(n_confusion):category, line, category_tensor, line_tensor = randomTrainingExample()output = evaluate(line_tensor)guess, guess_i = categoryFromOutput(output)category_i = all_categories.index(category)confusion[category_i][guess_i] += 1# Normalize by dividing every row by its sum
for i in range(n_categories):confusion[i] = confusion[i] / confusion[i].sum()# Set up plot
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)# Set up axes
ax.set_xticklabels([''] + all_categories, rotation=90)
ax.set_yticklabels([''] + all_categories)# Force label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))# sphinx_gallery_thumbnail_number = 2
plt.show()

输出

/var/lib/jenkins/workspace/intermediate_source/char_rnn_classification_tutorial.py:445: UserWarning:FixedFormatter should only be used together with FixedLocator/var/lib/jenkins/workspace/intermediate_source/char_rnn_classification_tutorial.py:446: UserWarning:FixedFormatter should only be used together with FixedLocator

你可以从主轴上挑出亮点,显示它猜错了哪些语言,例如中文猜错了韩语,西班牙语猜错了意大利语。它似乎在希腊语上表现得很好,而在英语上表现得很差(可能是因为与其他语言重叠)。

运行用户输入

def predict(input_line, n_predictions=3):print('\n> %s' % input_line)with torch.no_grad():output = evaluate(lineToTensor(input_line))# Get top N categoriestopv, topi = output.topk(n_predictions, 1, True)predictions = []for i in range(n_predictions):value = topv[0][i].item()category_index = topi[0][i].item()print('(%.2f) %s' % (value, all_categories[category_index]))predictions.append([value, all_categories[category_index]])predict('Dovesky')
predict('Jackson')
predict('Satoshi')

输出

> Dovesky
(-0.57) Czech
(-0.97) Russian
(-3.43) English> Jackson
(-1.02) Scottish
(-1.49) Russian
(-1.96) English> Satoshi
(-0.42) Japanese
(-1.70) Polish
(-2.74) Italian

in the Practical PyTorch repo中脚本的最终版本将上述代码拆分为几个文件:

  • data.py (加载文件)
  • model.py (定义 RNN)
  • train.py (执行训练)
  • predict.py (运行带有命令行参数的predict() )
  • server.py (使用bottle.py作为JSON API提供预测)

运行train.py来训练和保存网络。

运行predict.py并输入一个名称来查看预测:

$ python predict.py Hazaki
(-0.42) Japanese
(-1.39) Polish
(-3.51) Czech

运行server.py 并访问http://localhost:5533/Yourname以获得预测的JSON输出。

练习

尝试使用不同的数据集 -> 类别,例如:

  • 任何单词->语言
  • 名字->性别
  • 角色名称->作家
  • 页面标题 -> 博客或社交新闻网站子版块

使用一个更大的和/或更好的形状网络,可以获得更好的结果

  • 添加更多线性图层
  • 试试 nn.LSTM nn.GRU 网络层
  • 将这些RNNs组合成一个更高级的网络

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/34575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【国赛清单】2023全国大学生电赛综合测试【总结】

综合测评简介 &#xff08;1&#xff09;综合测评是全国大学生电子设计竞赛评审工作中非常重要的一个环节&#xff0c;是“一次竞赛二级评审”工作中全国专家组评审工作的一部分。 &#xff08;2&#xff09;测试对象为赛区推荐上报全国评奖的优秀参赛队全体队员&#xff0c;…

轻松转换TS视频为MP4,实现优质视频剪辑体验

如果你是一个视频剪辑爱好者&#xff0c;你一定会遇到各种视频格式之间的转换问题&#xff0c;特别是将TS视频转换为MP4格式。别担心&#xff0c;我们的视频剪辑软件将为你提供最简单、高效的解决方案&#xff01; 首先第一步&#xff0c;我们要进入媒体梦工厂主页面&#xff…

Elasticsearch同时使用should和must

问题及解决方法 must和should组合查询&#xff0c;should失效。使用must嵌套查询&#xff0c;将should组成的bool查询包含在其中一个must查询中。 SearchRequest request new SearchRequest(); request.indices("function_log");SearchSourceBuilder sourceBuilde…

掌握Python的X篇_32_使用python编辑pdf文件_pdfrw

本篇介绍利用python操作pdf文件&#xff0c;我们平时也会有合并和拆分pdf的需求&#xff0c;此时我们就可以使用本节内容。 文章目录 1. pdfrw的安装2. 切分pdf文件3. pdfrw官网及实现一版四面的实例 1. pdfrw的安装 pip install pdfrw官网地址&#xff1a;https://github.co…

【设计模式】装饰器模式

装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其结构。这种类型的设计模式属于结构型模式&#xff0c;它是作为现有的类的一个包装。 装饰器模式通过将对象包装在装饰器类中&#xff0c;以便动态地修改其行为…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验六 静态数码管显示

目录 前言 一、原理图及知识点介绍 1.1、数码管原理图&#xff1a; 二、代码分析 前言 第一个实验&#xff1a; 51单片机&#xff08;普中HC6800-EM3 V3.0&#xff09;实验例程软件分析 实验一 点亮第一个LED_ManGo CHEN的博客-CSDN博客 第二个实验&#xff1a;51单片机&am…

计算机竞赛 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介 今天学长向大家介绍LSTM基础 基于LSTM的预测算法 - 股票预测 天气预测 房价预测 这是一个较为新颖的竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/postgraduate 1 基于 Ke…

Java进阶-Oracle(二十)(1)

&#x1f33b;&#x1f33b; 目录 一、Oracle 数据库介绍1、Oracle 的概述2、Oracle 的结构2、Oracle的功能 二、安装与卸载1、卸载2、安装 三、使用&#xff08;需要关注得只有下面这两个&#xff09;四、PLSQL 的简单使用五、DBeaver 的简单使用 一、Oracle 数据库介绍 1、O…

【深度学习】遗传算法[选择、交叉、变异、初始化种群、迭代优化、几何规划排序选择、线性交叉、非均匀变异]

目录 一、遗传算法二、遗传算法概述2.1 选择2.2 交叉2.3 变异 三、遗传算法的基本步骤3.1 编码3.2 初始群体的生成3.3 适应度评估3.4 选择3.5 交叉3.6 变异3.7 总结 四、遗传算法工具箱4.1 initializega4.2 ga4.3 normGeomSelect4.4 arithXover4.5 nonUnifMutation 五、遗传算法…

ASL国产CS5213 转VGA信号输出音频 替代AG6200安格芯片 HDMI to VGA(带音频)方案设计原理图

CS5213功能&#xff1a;HDMI转VGA带音频输出&#xff0c;专注于设计HDMI转VGA带音频输出。可替代AG6200 AG6201。 CS5213芯片是一个HDMI&#xff08;高清多媒体接口&#xff09;到VGA桥接芯片。 它将HDMI信号转换为标准VGA信号它可以在适配器、智能电缆等设备中设计。 Capst…

前端接口修改工具 Requestly具体操作

更新于2023年8月12日18:17:56&#xff0c;插件版本可能会变&#xff0c;界面可能会有所变化 插件下载地址&#xff1a;https://chrome.google.com/webstore/detail/requestly-open-source-htt/mdnleldcmiljblolnjhpnblkcekpdkpa 注意&#xff0c;必须用谷歌浏览器&#xff0c;…

Linux 文件编辑命令

一、三种模式介绍 命令模式 插入模式(编辑模式) 末行模式 二、模式切换 1.命令模式切换到插入模式 &#xff08;1&#xff09; a //进入到当前光标后开始编辑 &#xff08;2&#xff09; A //进入到当前光标所在行的行末开始编辑 &#xff08;3&#xff09;i //进入当前光…

Python Opencv实践 - 图像缩放

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg_cat cv.imread("../SampleImages/cat.jpg", cv.IMREAD_COLOR) plt.imshow(img_cat[:,:,::-1])#图像绝对尺寸缩放 #cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) #指定Size大…

最新智能AI系统+ChatGPT源码搭建部署详细教程+知识库+附程序源码

近期有网友问宝塔如何搭建部署AI创作ChatGPT&#xff0c;小编这里写一个详细图文教程吧。 使用Nestjs和Vue3框架技术&#xff0c;持续集成AI能力到AIGC系统&#xff01; 增加手机端签到功能、优化后台总计绘画数量逻辑&#xff01;新增 MJ 官方图片重新生成指令功能同步官方 …

注意:阿里云服务器随机分配可用区说明

阿里云服务器如有ICP备案需求请勿选择随机可用区&#xff0c;因为当前地域下的可用区可能不支持备案&#xff0c;阿里云百科分享提醒大家&#xff0c;如果你的购买的云服务器搭建网站应用&#xff0c;网站域名需要使用这台云服务器备案的话&#xff0c;不要随机分配可用区&…

ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754)

ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754) 二、Variant 1 (CVE-2017-5753) 三、Variant 2 (CVE-2017-5715) 四、Variant 3 (CVE-2017-5754) 一、ATF(TF-A)安全通告 TFV-6 (CVE-2017-5753, CVE-2017-5715, C…

tp5中的事务处理

使用事务首先要数据库支持事务&#xff1b; 如下MySQL数据库user表开启事务支持&#xff0c;即设计表->引擎设置为InnoDB->保存 事务处理 1. 数据库的表引擎需要是 InnoDB 才可以使用&#xff0c;如果不是调整即可&#xff1b; 2. 事务处理&#xff0c;需要执行多个 SQ…

MOCK测试

介绍 mock&#xff1a;就是对于一些难以构造的对象&#xff0c;使用虚拟的技术来实现测试的过程。 mock测试&#xff1a;在测试过程中&#xff0c;对于某些不容易构造或者不容易获取的对象&#xff0c;可以用一个虚拟的对象来代替的测试方 法。 接口Mock测试&#xff1a;在接口…

Microsoft365家庭版1年订阅新功能及版本对比

Microsoft 365可帮助您工作、学习、组织、连接和创&#xff0c;只需一项方便的订阅&#xff0c;即可尽享具有 Microsft 365 的6款精品应用、可同时登录5 台设备&#xff08;包括 Windows、macOS、iOS 和 Android 设备&#xff09;、高级安全性等&#xff0c;并且可以自由管理授…

中间件多版本冲突的4种解决方案和我们的选择

背景 在小小的公司里面&#xff0c;挖呀挖呀挖。最近又挖到坑里去了。一个稳定运行多年的应用&#xff0c;需要在里面支持多个版本的中间件客户端&#xff1b;而多个版本的客户端在一个应用里运行时会有同名类冲突的矛盾。在经过询问chatGPT&#xff0c;百度&#xff0c;googl…