香甜的黄油 Sweet Butter
luogu 1828
题目大意:
有n头奶牛,他们在不同的牧场中,他们之间有一些路,现在要让他们去一个地方吃黄油,使他们的总距离最小
题目描述
农夫John发现做出全威斯康辛州最甜的黄油的方法:糖。把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油。当然,他将付出额外的费用在奶牛上。
农夫John很狡猾。像以前的Pavlov,他知道他可以训练这些奶牛,让它们在听到铃声时去一个特定的牧场。他打算将糖放在那里然后下午发出铃声,以至他可以在晚上挤奶。
农夫John知道每只奶牛都在各自喜欢的牧场(一个牧场不一定只有一头牛)。给出各头牛在的牧场和牧场间的路线,找出使所有牛到达的路程和最短的牧场(他将把糖放在那)
输入输出格式
输入格式:
第一行: 三个数:奶牛数N,牧场数(2<=P<=800),牧场间道路数C(1<=C<=1450)
第二行到第N+1行: 1到N头奶牛所在的牧场号
第N+2行到第N+C+1行: 每行有三个数:相连的牧场A、B,两牧场间距离D(1<=D<=255),当然,连接是双向的
输出格式:
一行 输出奶牛必须行走的最小的距离和
输入输出样例
输入样例#1:
3 4 5
2
3
4
1 2 1
1 3 5
2 3 7
2 4 3
3 4 5
输出样例#1:
8
说明
{样例图形
} {说明:
放在4号牧场最优
}
解题思路:
这道题就是最短路,为了稳定,我们选择SPFA,就是将每一个点设为起始点,然后用SPFA求出每个点的最短路,然后再求他们的和,求和最小的一个
#include<cstdio>
#include<iostream>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
int n,m,x,y,g,ans,nm,u,M,a[802],b[802],s[802],v[802],c[802];
bool p[802];
struct rec
{int next,to,l;
}f[3000];
int js(int dep)
{int num=0;queue<int> d;//队列memset(v,127/3,sizeof(v));//清空memset(p,false,sizeof(p));d.push(dep);//初始值p[dep]=true;//记录v[dep]=0;//预处理while(!d.empty()){g=d.front();//头元素d.pop();//出队for (int i=s[g];i;i=f[i].next)//枚举每一条边if (v[g]+f[i].l<v[f[i].to])//跟优{v[f[i].to]=v[g]+f[i].l;//更改if (!p[f[i].to])//不在队列{p[f[i].to]=true;//记录d.push(f[i].to);//入队}}p[g]=false;//清零}for (int i=1;i<=n;i++)num+=v[i]*c[i];//每个牧场里的牛乘上这个牧场离黄油的距离return num;
}
int main()
{scanf("%d %d %d",&nm,&n,&m);for (int i=1;i<=nm;i++){scanf("%d",&x);//输入c[x]++;//这个牧场里的牛多一头}for (int i=1;i<=m;i++){scanf("%d %d %d",&x,&y,&u);f[++M].l=u;//距离f[M].to=y;//指向f[M].next=s[x];//下一条线s[x]=M;//这个点的第一条线f[++M].l=u;//反过来f[M].to=x;f[M].next=s[y];s[y]=M;}ans=2147483647;for (int i=1;i<=n;i++)ans=min(js(i),ans);//最求小值printf("%d",ans);
}