Maze
状态表示:fuf_ufu表示在uuu节点走出迷宫期望次数,dud_udu表示度数
首先很容易想到下面式子fu=ku×f1+(1−ku−eu)×∑u→vfv+1duf_u=k_u×f_1+(1-k_u-e_u)×\frac{\sum _{u\to v}f_v+1}{d_u}fu=ku×f1+(1−ku−eu)×du∑u→vfv+1
每个节点有一个类似的式子,也就是nnn个式子,nnn个未知量我们需要求出f1f_1f1显然可以高斯消元O(n3)O(n^3)O(n3)但是看了1≤n≤1041\leq n\leq 10^41≤n≤104留下了可惜的泪水~~
之前也做过返回起点的题目,只需要在dp时候多记录一维信息于是向初中解方程那样求解即可这样时间复杂度就能优化到O(n)O(n)O(n),不过本题在树上,好像也不可行其实可以
对于“返回”在树上是如何体现的?
不难想到返回祖先,而此题中就是返回父亲以及返回根节点111,于是效仿返回题目的做法,列出下面方程
fu=ku×f1+1−ku−eudu×(ffa+1)+1−ku−eudu×∑v∈sonu(fv+1)f_u=k_u×f_1+\frac{1-k_u-e_u}{d_u}×(f_{fa}+1)+\frac{1-k_u-e_u}{d_u}×\sum_{v\in son_u}{(f_v+1)}fu=ku×f1+du1−ku−eu×(ffa+1)+du1−ku−eu×v∈sonu∑(fv+1)
稍微化简一下
fu=ku×f1+1−ku−eudu×ffa+1−ku−eudu×∑v∈sonufv+(1−ku−eu)f_u=k_u×f_1+\frac{1-k_u-e_u}{d_u}×f_{fa}+\frac{1-k_u-e_u}{d_u}×\sum_{v\in son_u}{f_v}+(1-k_u-e_u)fu=ku×f1+du1−ku−eu×ffa+du1−ku−eu×v∈sonu∑fv+(1−ku−eu)
我们发现所有dp式子都可以写成
fu=au×f1+bu×ffa+cuf_u=a_u×f_1+b_u×f_{fa}+c_ufu=au×f1+bu×ffa+cu
由于fav=ufa_v=ufav=u上述式子还能化简得fv=av×f1+bv×fu+cvf_v=a_v×f_1+b_v×f_u+c_vfv=av×f1+bv×fu+cv
fu=ku×f1+1−ku−eudu×ffa+1−ku−eudu×∑v∈sonu(av×f1+bv×fu+cv)+(1−ku−eu)f_u=k_u×f_1+\frac{1-k_u-e_u}{d_u}×f_{fa}+\frac{1-k_u-e_u}{d_u}×\sum_{v\in son_u}{(a_v×f_1+b_v×f_u+c_v)}+(1-k_u-e_u)fu=ku×f1+du1−ku−eu×ffa+du1−ku−eu×v∈sonu∑(av×f1+bv×fu+cv)+(1−ku−eu)
于是有更平凡的式子
(1−1−ku−eudu∑v∈sonubv)×fu=(ku+1−ku−eudu∑v∈sonuav)×f1+1−ku−eudu×ffa+1−ku−eudu∑v∈sonucv+(1−ku−eu)(1-\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{b_v})×f_u=(k_u+\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{a_v})×f_1+\frac{1-k_u-e_u}{d_u}×f_{fa}+\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{c_v}+(1-k_u-e_u)(1−du1−ku−euv∈sonu∑bv)×fu=(ku+du1−ku−euv∈sonu∑av)×f1+du1−ku−eu×ffa+du1−ku−euv∈sonu∑cv+(1−ku−eu)
于是有au=ku+1−ku−eudu∑v∈sonuav1−1−ku−eudu∑v∈sonubva_u=\frac{k_u+\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{a_v}}{1-\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{b_v}}au=1−du1−ku−eu∑v∈sonubvku+du1−ku−eu∑v∈sonuav
bu=1−ku−eudu1−1−ku−eudu∑v∈sonubvb_u=\frac{\frac{1-k_u-e_u}{d_u}}{1-\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{b_v}}bu=1−du1−ku−eu∑v∈sonubvdu1−ku−eu
cu=1−ku−eudu∑v∈sonucv+(1−ku−eu)1−1−ku−eudu∑v∈sonubvc_u=\frac{\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{c_v}+(1-k_u-e_u)}{1-\frac{1-k_u-e_u}{d_u}\sum_{v\in son_u}{b_v}}cu=1−du1−ku−eu∑v∈sonubvdu1−ku−eu∑v∈sonucv+(1−ku−eu)
然后树形dpO(n)O(n)O(n)递推即可
#include<cstdio>
#include<cstring>
using namespace std;
constexpr int N=10010;
constexpr double eps=1e-10;
int h[N],e[2*N],ne[2*N],idx;
void add(int a,int b){e[idx]=b,ne[idx]=h[a],h[a]=idx++;}
int d[N],n;
double K[N],E[N],T[N],A[N],B[N],C[N];
int sgn(double x)
{if(fabs(x)<eps) return 0;if(x<0) return -1;return 1;
}
bool dfs(int u,int fa)
{int m=d[u];A[u]=K[u];B[u]=T[u]/m;C[u]=T[u];double temp=0;for(int i=h[u];i!=-1;i=ne[i]){int v=e[i];if(v==fa) continue;if(!dfs(v,u)) return 0;A[u]+=T[u]/m*A[v];temp+=T[u]/m*B[v];C[u]+=T[u]/m*C[v];}if(!sgn(1.0-temp)) return 0;A[u]/=(1-temp);B[u]/=(1-temp);C[u]/=(1-temp);return 1;
}
int main()
{int TT;scanf("%d",&TT);for(int ca=1;ca<=TT;ca++){scanf("%d",&n);memset(h,-1,sizeof(int)*(n+1));idx=0;memset(d,0,sizeof(int)*(n+1));for(int i=1;i<n;i++){int u,v;scanf("%d%d",&u,&v);add(u,v),add(v,u);d[u]++,d[v]++;}for(int i=1;i<=n;i++){scanf("%lf%lf",&K[i],&E[i]);K[i]/=100;E[i]/=100;T[i]=1-K[i]-E[i];}if(dfs(1,0)&&sgn(1.0-A[1]))printf("Case %d: %.10f\n",ca,C[1]/(1-A[1]));else printf("Case %d: impossible\n",ca);}return 0;
}
太秒了吧!!!