CF938E Max History

CF938E Max History

题意:

我们定义f(a)为:

1、开始时,f(a)=0,M=1。

2、对于每个2<=i<=n,如果a[M]<a[i],那么f(a)=f(a)+a[M],M=i。

现在对于一个给定的数组a,求其所有排列的f(a)之和,答案对1e9+7取模。

题解:

计数问题,组合数推导
经常用的组合恒等式:
k∗Cnk=n∗Cn−1k−1k * C_{n}^{k}=n*C_{n-1}^{k-1}kCnk=nCn1k1
Ckn∗Cmk=Cmn∗Cm−nm−k(m−k<m−n)C_{k}^{n}*C_{m}^{k}=C_{m}^{n}*C_{m-n}^{m-k}(m-k<m-n)CknCmk=CmnCmnmk(mk<mn)
∑i=0nCni=2n\sum_{i=0}^{n}C_{n}^{i}=2^ni=0nCni=2n
∑k=0n∗(−1)kCnk=0\sum_{k=0}^{n}*(-1)^kC_{n}^{k}=0k=0n(1)kCnk=0
Cnk+Cnk+1=Cn+1k+1C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1}Cnk+Cnk+1=Cn+1k+1
∑k=0mCn+kk=Cn+m+1m\sum_{k=0}^{m}C_{n+k}^{k}=C_{n+m+1}^{m}k=0mCn+kk=Cn+m+1m
范德蒙德卷积:
∑i=0kCniCmk−i=Cn+mk\sum_{i=0}^{k}C_{n}^{i}C_{m}^{k-i}=C_{n+m}^{k}i=0kCniCmki=Cn+mk
请添加图片描述

代码:

#include<bits/stdc++.h>
#define mod 1000000007
const int maxn = 1000035;int n,ans,cnt,a[maxn],fac[maxn],inv[maxn];int read()
{char ch = getchar();int num = 0, fl = 1;for (; !isdigit(ch); ch=getchar())if (ch=='-') fl = -1;for (; isdigit(ch); ch=getchar())num = (num<<1)+(num<<3)+ch-48;return num*fl;
}
int main()
{n = read();for (int i=1; i<=n; i++) a[i] = read();std::sort(a+1, a+n+1);fac[0] = fac[1] = inv[0] = inv[1] = 1;for (int i=2; i<=n+2; i++){inv[i] = mod-1ll*(mod/i)*inv[mod%i]%mod,fac[i] = 1ll*fac[i-1]*i%mod;}for (int i=1,j; i<=n; i=j+1){for (j=i; a[j+1]==a[i]; j++);//J为 if (j==n) break;//i-1是严格比他小的数 //n-j是严格大于他的数 //j-i+1是与a[i]一样大的数量 cnt = inv[n-i+1];ans = (1ll*ans+1ll*a[i]*(j-i+1)%mod*cnt%mod)%mod;}printf("%d\n",1ll*ans*fac[n]%mod);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316589.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最大限度地降低多线程 C# 代码的复杂性

分支或多线程编程是编程时最难最对的事情之一。这是由于它们的并行性质所致&#xff0c;即要求采用与使用单线程的线性编程完全不同的思维模式。对于这个问题&#xff0c;恰当类比就是抛接杂耍表演者&#xff0c;必须在空中抛接多个球&#xff0c;而不要让它们相互干扰。这是一…

CodeForces 1491G Switch and Flip(结论)

problem 洛谷链接 solution 弱化版&#xff1a;如果不考虑翻面&#xff0c;那就是转化为若干个环的问题了。 这里我们尝试用同样的思路解决。 首先明确几个硬币一次交换后的等价情况&#xff0c;如图&#xff08;灰色表示反面&#xff09; &#xff08;u→vu\rightarrow …

ASP.NET Core 借助 K8S 玩转容器编排

Production-Grade Container Orchestration - Automated container deployment, scaling, and management. 生产级别的容器编排系统——自动化的容器部署、扩展和管理。1. 引言由于最近在学习微服务&#xff0c;所以就基于之前docker的基础上把玩一下k8s&#xff08;Kubernetes…

CF1009E Intercity Travelling

CF1009E Intercity Travelling 题意&#xff1a; 有一段路程&#xff0c;路程可以看作是从0到n的一条直线 如果从起点出发或者从休息点出发&#xff0c;连续驾驶k千米&#xff0c;则需要消耗的体能为a1…ak 每个整点都有可能拥有一个休息点&#xff0c;每个休息点存在或者不存…

CodeForces 1396E Distance Matching(构造+树的重心+dfs+set)

problem 洛谷链接 solution 这种要求值和恰好为 kkk 的题目&#xff0c;一般要先明确值和的取值范围。 所以我们先来确定一下值和的最小值和最大值。 将一条路径拆成若干条边&#xff0c;单独计算每条边对路径的贡献。 假设一条边将树划分成 S,TS,TS,T 集合。因为 nnn 为…

程序员修神之路--

写在开始一般来说有两种策略用来在并发线程中进行通信&#xff1a;共享数据和消息传递。使用共享数据方式的并发编程面临的最大的一个问题就是数据条件竞争。处理各种锁的问题是让人十分头痛的一件事。传统多数流行的语言并发是基于多线程之间的共享内存&#xff0c;使用同步方…

Lawn of the Dead

Lawn of the Dead 题意&#xff1a; 有一个N * M的方格&#xff0c;我们从(1,1)出发&#xff0c;只能向右走或者向下走&#xff0c;存在一些障碍&#xff0c;问有多少格子是我们所能到达的 2<n,m,k<1e5 题解&#xff1a; 所有的点减去不能到达的点的个数&#xff0c;…

CodeForces 1622F Quadratic Set(结论+异或哈希+散列表)

problem 洛谷链接 solution 最后子集大小一定 ≥n−3\ge n-3≥n−3&#xff0c;下面考虑证明这个结论。 假设 n2kn2kn2k。 ∏i1n(i!)∏i1k(2i−1)!(2i)!∏i1k(((2i−1)!)22i)∏i1k((2i−1)!)2⋅∏i1k2i∏i1k((2i−1)!)2⋅2k⋅k!\prod_{i1}^n(i!)\prod_{i1}^{k}(2i-1)!(2i)!\…

.Netcore 2.0 Ocelot Api网关教程(8)- 缓存

Ocelot中使用 CacheManager 来支持缓存&#xff0c;官方文档中强烈建议使用该包作为缓存工具。以下介绍通过使用CacheManager来实现Ocelot缓存。1、通过Nuget添加 Ocelot.Cache.CacheManager 包在OcelotGetway项目中添加引用&#xff1a;2、修改 Startup 中的 ConfigureService…

Acwing 271. 杨老师的照相排列

Acwing 271. 杨老师的照相排列 题意&#xff1a; 有n个数分别是从1到n&#xff0c;现在排成k排&#xff0c;每排分别有Ci个数&#xff0c;要求每排每列的都是从小到大&#xff0c;问有多少种方案 题解&#xff1a; 因为每行每列都是单调的&#xff0c;因此我们可以从小到大…

CodeForces1477D Nezzar and Hidden Permutations(构造+调整+菊花图)

problem 洛谷链接 题意&#xff1a;给定 mmm 条形如 (u,v)(u,v)(u,v) 的限制&#xff0c;要求 au,ava_u,a_vau​,av​ 的相对大小关系与 bu,bvb_u,b_vbu​,bv​ 相同。 且尽可能减少 aibia_ib_iai​bi​ 的数量&#xff0c;输出 a,ba,ba,b 两个排列。 solution 我们考虑将…

Acwing 273. 分级

Acwing 273. 分级 题意&#xff1a; 给定一个长度为N的序列A&#xff0c;现在构造一个长度为N的序列B&#xff0c;满足&#xff0c;B是非严格单增。最小化S∑i1N∣Ai−Bi∣\sum_{i1}^{N}|A_i-B_i|∑i1N​∣Ai​−Bi​∣ 题解&#xff1a; 引理&#xff1a; 一定存在一组最优…

.NET Core 给使用.NET的公司所带来的机遇

今晚在余晟的微信公众号看到了一篇文章《从.NET/C#开发的“后继无人”说起》。 这篇文章以从.NET/C#开发的“后继无人” 引出了推广极客时间的课程 刘超的《趣谈Linux操作系统》&#xff0c;通篇看下来这明显是刘超的《趣谈Linux操作系统》的软文。软文地址&#xff1a;https:/…

AoCoder 1983 [AGC001E] BBQ Hard(组合数+dp)

problem 洛谷链接 solution ∑i1n∑ji1n(aibiajbjaiaj)∑i1n∑j1n(aibiajbjaiaj)−∑i1n(2(aibi)2ai)2\sum_{i1}^{n}\sum_{ji1}^n\binom{a_ib_ia_jb_j}{a_ia_j}\frac{\sum_{i1}^{n}\sum_{j1}^n\binom{a_ib_ia_jb_j}{a_ia_j}-\sum_{i1}^{n}\binom{2(a_ib_i)}{2a_i}}{2} i1∑n​…

Git Flow分支策略与Azure DevOps相关功能简介

想了很久&#xff0c;还是写这么一篇文章来总结一下有关分支策略和DevOps的一些内容吧。其实&#xff0c;DevOps相关的内容并不是我的工作范围&#xff0c;不过对于敏捷开发、DevOps、项目管理等等这一系列的与开发过程相关的内容&#xff0c;我还是有些经验的&#xff0c;也就…

AcWing 274. 移动服务

题意&#xff1a; 2<L<200 1<N<1000 题解&#xff1a; 一共就三个员工&#xff0c;我们可以在状态中记录三个员工的位置&#xff1b; 有&#xff1a;dp[i][x][y][z]:第i个工作完成后&#xff0c;三个员工的坐标分别是x&#xff0c;y&#xff0c;z&#xff0c;的最…

AtCoder 2000 [AGC002F] Leftmost Ball(dp+组合数)

problem 洛谷链接 solution 显然&#xff0c;合法序列的状态要求任何一个前缀的白色球数≥\ge≥已出现的不同颜色数。 所以可以将球分成白色球和有颜色球两类球分开放。 其次&#xff0c;有颜色球一类重要的是有颜色球第一个放的位置&#xff0c;因为这会影响到前缀颜色数…

NSwag 和 ASP.NET Core

NSwag 提供了下列功能&#xff1a;能够使用 Swagger UI 和 Swagger 生成器。灵活的代码生成功能。借助 NSwag&#xff0c;无需使用现有 API。也就是说&#xff0c;可使用包含 Swagger 的第三方 API&#xff0c;并生成客户端实现。 使用 NSwag&#xff0c;可以加快开发周期&…

Acwing 276. I-区域

Acwing 276. I-区域 题意&#xff1a; 在 NM 的矩阵中&#xff0c;每个格子有一个权值&#xff0c;要求寻找一个包含 K 个格子的凸连通块&#xff08;连通块中间没有空缺&#xff0c;并且轮廓是凸的&#xff09;&#xff0c;使这个连通块中的格子的权值和最大。 注意&#xf…

中心城镇问题(长链剖分优化树形dp)

problem 给定 nnn 个城市&#xff0c;n−1n-1n−1 条道路&#xff0c;形成一棵树。每座城市上的人口为 wiw_iwi​。 现要修建若干个中心城镇&#xff0c;满足任意两个中心城镇之间的距离严格大于 kkk。 最大化中心城镇的总人口。 n,k≤106,wi≤109n,k\le 10^6,w_i\le 10^9n,…