AoCoder 1983 [AGC001E] BBQ Hard(组合数+dp)

problem

洛谷链接

solution

∑i=1n∑j=i+1n(ai+bi+aj+bjai+aj)=∑i=1n∑j=1n(ai+bi+aj+bjai+aj)−∑i=1n(2(ai+bi)2ai)2\sum_{i=1}^{n}\sum_{j=i+1}^n\binom{a_i+b_i+a_j+b_j}{a_i+a_j}=\frac{\sum_{i=1}^{n}\sum_{j=1}^n\binom{a_i+b_i+a_j+b_j}{a_i+a_j}-\sum_{i=1}^{n}\binom{2(a_i+b_i)}{2a_i}}{2} i=1nj=i+1n(ai+ajai+bi+aj+bj)=2i=1nj=1n(ai+ajai+bi+aj+bj)i=1n(2ai2(ai+bi))

Cx+yxC_{x+y}^xCx+yx 可以视为网格图中 (0,0)→(x,y)(0,0)\rightarrow (x,y)(0,0)(x,y) 的路径方案数

Cai+bi+aj+bjai+aj=C(ai+bi)−(−aj,−bj)ai−(−aj)C_{a_i+b_i+a_j+b_j}^{a_i+a_j}=C_{(a_i+b_i)-(-a_j,-b_j)}^{a_i-(-a_j)}Cai+bi+aj+bjai+aj=C(ai+bi)(aj,bj)ai(aj) 即视为 (−aj,−bj)→(ai,bi)(-a_j,-b_j)\rightarrow (a_i,b_i)(aj,bj)(ai,bi) 的路径方案数。

那么这道题就是多源汇路径数了。

在一开始读入数据的时候,起点方案数增加一,f[−ai][−bi]++f[-a_i][-b_i]++f[ai][bi]++

然后暴力转移 dpdpdpfi,j←+fi−1,j+fi,j−1f_{i,j}\leftarrow^+ f_{i-1,j}+f_{i,j-1}fi,j+fi1,j+fi,j1,求出到 f[ai][bi]f[a_i][b_i]f[ai][bi] 的方案数。

网格图的坐标 ∈[−2000,2000]\in[-2000,2000][2000,2000],整体平移 2e32e32e3 ,这都是细节实现。

code

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define mod 1000000007
#define MAX 2000
int a[200005], b[200005];
int fac[8005], inv[8005];
int f[4005][4005];
int n;int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}int C( int n, int m ) { if( n < m ) return 0;else return fac[n] * inv[m] % mod * inv[n - m] % mod;
}signed main() {scanf( "%lld", &n );for( int i = 1;i <= n;i ++ ) {scanf( "%lld %lld", &a[i], &b[i] );f[MAX - a[i]][MAX - b[i]] ++;}fac[0] = inv[0] = 1; for( int i = 1;i <= (MAX << 2);i ++ ) fac[i] = fac[i - 1] * i % mod;inv[MAX << 2] = qkpow( fac[MAX << 2], mod - 2 );for( int i = (MAX << 2) - 1;i;i -- ) inv[i] = inv[i + 1] * ( i + 1 ) % mod;for( int i = 0;i <= (MAX << 1);i ++ )for( int j = 0;j <= (MAX << 1);j ++ ) {if( i ) ( f[i][j] += f[i - 1][j] ) %= mod;if( j ) ( f[i][j] += f[i][j - 1] ) %= mod;}int ans = 0, cnt = 0;for( int i = 1;i <= n;i ++ ) {( cnt += C( a[i] + b[i] << 1, a[i] << 1 ) ) %= mod;( ans += f[MAX + a[i]][MAX + b[i]] ) %= mod;}printf( "%lld\n", ( ans - cnt + mod ) % mod * qkpow( 2, mod - 2 ) % mod );return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git Flow分支策略与Azure DevOps相关功能简介

想了很久&#xff0c;还是写这么一篇文章来总结一下有关分支策略和DevOps的一些内容吧。其实&#xff0c;DevOps相关的内容并不是我的工作范围&#xff0c;不过对于敏捷开发、DevOps、项目管理等等这一系列的与开发过程相关的内容&#xff0c;我还是有些经验的&#xff0c;也就…

AcWing 274. 移动服务

题意&#xff1a; 2<L<200 1<N<1000 题解&#xff1a; 一共就三个员工&#xff0c;我们可以在状态中记录三个员工的位置&#xff1b; 有&#xff1a;dp[i][x][y][z]:第i个工作完成后&#xff0c;三个员工的坐标分别是x&#xff0c;y&#xff0c;z&#xff0c;的最…

AtCoder 2000 [AGC002F] Leftmost Ball(dp+组合数)

problem 洛谷链接 solution 显然&#xff0c;合法序列的状态要求任何一个前缀的白色球数≥\ge≥已出现的不同颜色数。 所以可以将球分成白色球和有颜色球两类球分开放。 其次&#xff0c;有颜色球一类重要的是有颜色球第一个放的位置&#xff0c;因为这会影响到前缀颜色数…

NSwag 和 ASP.NET Core

NSwag 提供了下列功能&#xff1a;能够使用 Swagger UI 和 Swagger 生成器。灵活的代码生成功能。借助 NSwag&#xff0c;无需使用现有 API。也就是说&#xff0c;可使用包含 Swagger 的第三方 API&#xff0c;并生成客户端实现。 使用 NSwag&#xff0c;可以加快开发周期&…

Acwing 276. I-区域

Acwing 276. I-区域 题意&#xff1a; 在 NM 的矩阵中&#xff0c;每个格子有一个权值&#xff0c;要求寻找一个包含 K 个格子的凸连通块&#xff08;连通块中间没有空缺&#xff0c;并且轮廓是凸的&#xff09;&#xff0c;使这个连通块中的格子的权值和最大。 注意&#xf…

中心城镇问题(长链剖分优化树形dp)

problem 给定 nnn 个城市&#xff0c;n−1n-1n−1 条道路&#xff0c;形成一棵树。每座城市上的人口为 wiw_iwi​。 现要修建若干个中心城镇&#xff0c;满足任意两个中心城镇之间的距离严格大于 kkk。 最大化中心城镇的总人口。 n,k≤106,wi≤109n,k\le 10^6,w_i\le 10^9n,…

开源Dapper的Lambda扩展-Sikiro.Dapper.Extension V2.0

去年我在业余时间&#xff0c;自己整了一套dapper的lambda表达式的封装&#xff0c;原本是作为了一个个人的娱乐项目&#xff0c;当时也只支持了Sql Server数据库。随之开源后&#xff0c;有不少朋友也对此做了试用&#xff0c;也对我这个项目提出了不少的建议。因此我在最近公…

Acwing 277. 饼干

Acwing 277. 饼干 题意&#xff1a; 圣诞老人共有 M 个饼干&#xff0c;准备全部分给 N 个孩子。 每个孩子有一个贪婪度&#xff0c;第 i 个孩子的贪婪度为 g[i]。 如果有 a[i] 个孩子拿到的饼干数比第 i 个孩子多&#xff0c;那么第 i 个孩子会产生 g[i]a[i] 的怨气。 给…

[CQOI2015]选数(数论分块+杜教筛)

problem 洛谷链接 solution 将 L,HL,HL,H 的范围放缩 1K\frac 1 KK1​&#xff0c;都除掉 KKK&#xff0c;特殊的 LLL 边界注意一下。 H←H/K,L←(L−1)/K1H\leftarrow H/K,L\leftarrow (L-1)/K1H←H/K,L←(L−1)/K1。 问题转化为 [L,H][L,H][L,H] 中任选 NNN 个数 gcd1\te…

Docker最全教程之使用 Visual Studio Code玩转Docker(二十一)

VS Code是一个年轻的编辑器&#xff0c;但是确实是非常犀利。通过本篇&#xff0c;老司机带你使用VS Code玩转Docker——相信阅读本篇之后&#xff0c;无论是初学者还是老手&#xff0c;都可以非常方便的玩转Docker了&#xff01;所谓是“工欲善其事必先利其器”&#xff0c;VS…

《算法竞赛进阶指南》 0x50 动态规划

题目后面加 ∗*∗ 表示题目过于简单或不具备特征性&#xff0c;不做题解 线性DP AcWing 271. 杨老师的照相排列 811人打卡 AcWing 272. 最长公共上升子序列 778人打卡(∗*∗) AcWing 273. 分级 536人打卡 AcWing 274. 移动服务 513人打卡 AcWing 275. 传纸条 568人打卡&#xf…

【送书活动】10分钟了解Docker,运维和开发视角有什么不同?

Docker 是 Golang 编写的&#xff0c; 自 2013 年推出以来&#xff0c;受到越来越多的开发者的关注。如今Docker无处不在&#xff0c;这是不争的事实。开发人员都很喜欢它&#xff0c;运维工程师也需要它。他们都需要深入了解如何在关键业务环境中构建和维护符合生产级别要求的…

luogu P4240 毒瘤之神的考验(莫比乌斯反演+递推前缀和+数论分块)

problem 洛谷链接 solution ∑i1n∑j1mφ(ij)∑i1n∑j1mφ(i)φ(j)gcd⁡(i,j)φ(gcd⁡(i,j))\sum_{i1}^n\sum_{j1}^m\varphi(ij)\sum_{i1}^n\sum_{j1}^m\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi{(\gcd(i,j))}}i1∑n​j1∑m​φ(ij)i1∑n​j1∑m​φ(gcd(i,j))φ(i)φ(j…

可持久化(二)

文章目录【可持久化值域线段树/主席树】主席树代码【二维数点】例题【可持久化值域线段树/主席树】 P3834 【模板】可持久化线段树 1&#xff08;主席树&#xff09; 查询序列区间第k小&#xff0c;静态在线。给定 n 个整数构成的序列&#xff0c;将对于指定的闭区间查询其区间…

.NET Core / C# 开发 IOT 嵌入式设备的个人见解

( .NET Core 七龙珠 )一、IOT 平台的支持先看国内优秀的云计算IOT平台(不含QQ互联、小米IOT等针对特定产品的开发者平台&#xff0c;仅列出部分云计算厂商的IOT平台)阿里云 IOThttps://iot.aliyun.com/华为物联网https://developer.huawei.com/ict/cn/site-iot-next腾讯云 物联…

合成小丹(dp+二进制按位或+结论)

problem 给定 nnn 个在 [0,2ω−1][0,2^\omega-1][0,2ω−1] 内的整数。执行下面操作两种操作共 n−1n-1n−1 次&#xff1a; 选择两个整数 x,yx,yx,y 从数列中删去&#xff0c;并加入 ⌊x∣y2⌋\lfloor\frac{x|y}{2}\rfloor⌊2x∣y​⌋&#xff0c;这里的 | 表示按位或。选择…

P2633 Count on a tree

P2633 Count on a tree 题意&#xff1a; 给定一棵 n 个节点的树&#xff0c;每个点有一个权值。有 m 个询问&#xff0c;每次给你 u,v,k&#xff0c;你需要回答 u xor last 和 v 这两个节点间第 k 小的点权。 其中last 是上一个询问的答案&#xff0c;定义其初始为 0&#…

[NewLife.XCode]增量累加

NewLife.XCode是一个有10多年历史的开源数据中间件&#xff0c;支持nfx/netstandard&#xff0c;由新生命团队(2002~2019)开发完成并维护至今&#xff0c;以下简称XCode。整个系列教程会大量结合示例代码和运行日志来进行深入分析&#xff0c;蕴含多年开发经验于其中&#xff0…

King of Range

King of Range 题意&#xff1a; 给你n个数&#xff0c;有m个询问&#xff0c;每次询问一个x&#xff0c;问有多少个区间的最大值减最小值大于x 题解&#xff1a; 我一开始的想法 st表实现区间最大减最小&#xff0c;利用二分来找这个区间范围&#xff0c;复杂度O(nmlogn)&…

膜拜大丹(结论+二元环)

problem 有两个国家&#xff0c;国家 AAA 有 nnn 座城市&#xff0c;国家 BBB 有 mmm 座城市&#xff0c;两个国家间有若干条单向航线。 具体地&#xff0c;有长度为 nnn 的数组 aaa 和长度为 mmm 的数组 bbb。国家 AAA 的第 iii 座城市有单向航线可以到达国家 BBB 的 1∼ai1…