[SDOI2012]吊灯(结论)

problem

洛谷链接

solution

显然,颜色相同的灯泡形成一个连通块,且连通块的大小 i∣ni\mid nin

这道题要能发现一个结论:一定至少存在一种颜色的连通块 满足该联通块内的任意一个节点 都不是异种颜色点 的父亲。

即,至少有一个点其子树(含自己)内中所有点颜色均相同。

证明的话,可以考虑将每种颜色连通块看作一个点。

父亲与儿子颜色不同的边,转化到新图上的父亲颜色连通块点到儿子颜色联通块点的一条有向边。

显然这是一个 DAG\text{DAG}DAG,得证。(如果成环,意味着原图上某个颜色点就没有形成一个连通块而是多个)

拓扑排序传递连通块大小,我们可以推出每个连通块内都至少有个点 uuu 满足 i∣sizui\mid siz_uisizu

那么就可以做了,本题特殊的性质满足每个点的父亲编号都小于自己,直接倒序遍历统计子树大小即可。

枚举联通块大小 iii,枚举所有 i∣ji\mid jij ,记录 sizu=jsiz_u=jsizu=j 的点有 cntjcnt_jcntj 个,将这些节点数累和 tottottot

最后看 tot∗i≥ntot*i\ge ntotin 是否包含了整棵树。

code

#include <bits/stdc++.h>
using namespace std;
#define maxn 1200005
int n;
int f[maxn], siz[maxn], cnt[maxn];void read( int &x ) {x = 0; char s = getchar();while( s < '0' or s > '9' ) s = getchar();while( '0' <= s and s <= '9' ) {x = ( x << 1 ) + ( x << 3 ) + ( s ^ 48 );s = getchar();}
}int main() {scanf( "%d", &n );for( int i = 2;i <= n;i ++ ) read( f[i] );for( int t = 1;t <= 10;t ++ ) {printf( "Case #%d:\n", t );if( t ^ 1 ) {for( int i = 2;i <= n;i ++ )f[i] = ( f[i] + 19940105 ) % ( i - 1 ) + 1;}for( int i = 1;i <= n;i ++ ) siz[i] = 1, cnt[i] = 0;for( int i = n;i;i -- ) siz[f[i]] += siz[i];//siz[i]:i子树的大小 含自己for( int i = 1;i <= n;i ++ ) cnt[siz[i]] ++;//cnt[i]:子树大小为i的节点个数for( int i = 1;i <= n;i ++ ) //枚举连通块大小if( n % i == 0 ) {int tot = 0;for( int j = 1;j * i <= n;j ++ ) { //加上所有子树大小为i倍数的节点个数tot += cnt[i * j];if( tot * i >= n ) {//一个节点至少含i个点 判断是否包含了整棵树printf( "%d\n", i );break;}}}}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316516.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文带你全面认识Excel催化剂系列功能

2018年1月1日决定打造一款Excel插件&#xff0c;取名为Excel催化剂&#xff0c;历时半年的时间&#xff0c;在努力打造出和传统插件有功能差异化的基础上&#xff0c;让大家可以真正得到一些有价值非鸡肋的功能&#xff0c;对开发什么样的功能也构思了许久&#xff0c;同时对免…

可持久化汇总(讲解+题目)

可持久化(一) 可持久化(二) 可持久化3–可持久化01Trie 可持久化4–可持久化并查集 各模块的例题都在各自讲解下面有写 下面是加强练习 练习题讲解——肖然老师的博客 练习题&#xff1a; P4137 Rmq Problem / mex P4587 [FJOI2016]神秘数 CF484E Sign on Fence CF1080F Katya …

[学习笔记] 乱世之神杀疯了 —— K-D tree

文章目录K-D tree建树合并插入删除查询(估价函数)旋转坐标系题目练习[SDOI2012]最近最远点对[Violet]天使玩偶/SJY摆棋子[CQOI2016]K远点对[国家集训队]JZPFARThe closest M points简单题巧克力王国[BOI2007]Mokia 摩基亚[CH弱省胡策R2]TATT[BZOJ3815]卡常数[NOI2019]弹跳A sim…

【春华秋实】.NET Core之只是多看了你一眼

技术学习是一件系统性的事情&#xff0c;如果拒绝学习&#xff0c;那么自己就会落后以至于被替代。.NET也是一样&#xff0c;当开源、跨平台成为主流的时候&#xff0c;如果再故步自封&#xff0c;等待.NET的就是死路一条&#xff0c;幸好.NET Core问世了&#xff0c;社区反响积…

[SDOI2010]粟粟的书架

[SDOI2010]粟粟的书架 题意&#xff1a; 一个R * C的矩阵&#xff0c;每个位置都有个数page[ij]&#xff0c;现在选定一个小矩阵范围(给左上角坐标&#xff0c;和右下角坐标)&#xff0c;问这个范围内的数总和是否大于h&#xff0c;如果大于h的话最少选几个数aij 对于50%的数…

基于Asp.Net Core的简单社区项目源代码开源

2019年3月27号 更新版本 本项目基于 ASP.NET CORE 3.0EF CORE 3.0开发使用vs2019 sqlserver 2017(数据库脚本最低支持sql server 2012/)使用步骤:1.下载相关开发工具2.运行数据库脚本目录下的相关脚本3.默认前端账号密码: 18812345678 1234564.默认后台账号密码: admin 123456开…

[学习笔记] 如果你愿意学那么你是可以看的懂的 —— 群论与 burnside 引理和 polya 定理

群与子群 <G,op><G,op><G,op> 是一个群需要满足以下条件&#xff1a; opopop 是一个满足结合律的二元运算&#xff0c;如 *&#xff0c;。GGG 是一个集合&#xff0c;存在单位元 eee。GGG 中所有元素都有逆元。即 GGG 对 opopop 运算封闭&#xff0c;封闭简单…

P2469 [SDOI2010]星际竞速

P2469 [SDOI2010]星际竞速 题意&#xff1a; 有n个点&#xff0c;m个边&#xff0c;边是单向边(只能从小编号点到大编号点)&#xff0c;你也可以花费ai直接到达点i。问将1~n所有点都经过一边最小费用是多少&#xff1f; 题解&#xff1a; 最小费用最大流&#xff0c;网络流…

为什么从前那些.NET开发者都不写单元测试呢?

楔子四年前我虽然也写了很多年代码&#xff0c;由于公司虽然规模不小&#xff0c;却并非一家规范化的软件公司&#xff0c;因此在项目中严格意义上来说并没有架构设计、也不写单元测试&#xff0c;后来有幸加入了一家公司&#xff0c;这家公司虽然也是一家小公司&#xff0c;但…

git 命令的使用

git 各个命令的详细使用方法参考git-docs。 Table of Contents git Table of Contents add archive blame branch checkout cherry-pick clone commit config diff fetch for-each-ref github init log & show merge mv pull push rebase remote r…

求和(莫比乌斯反演)

由于找不到提交网站&#xff0c;所以不保证正确性哦~ problem 已知积性函数 F(1)1&#xff0c;F(pk)pk1F(1)1&#xff0c;F(p^k)p^k1F(1)1&#xff0c;F(pk)pk1。&#xff08;ppp为质数&#xff0c;k∈Zk∈Z^k∈Z&#xff09; 给定 nnn&#xff0c;求 ∑i1nF(i)\sum_{i1}^n F…

P2467 [SDOI2010]地精部落

P2467 [SDOI2010]地精部落 题意&#xff1a; 有n个山脉高度分别是1到n&#xff0c;现在让你按照山峰山谷的顺序依次摆放(第一个可以是山峰也可以是山谷)&#xff0c;问有多少方案(答案mod p) 题解&#xff1a; dp&#xff0c;但是自己推不出来 这个博客讲的非常详细&#x…

使用 xUnit 编写 ASP.NET Core 单元测试

还记得 .NET Framework 的 ASP.NET WebForm 吗&#xff1f;那个年代如果要在 Web 层做单元测试简直就是灾难啊。.NET Core 吸取教训&#xff0c;在设计上考虑到了可测试性&#xff0c;就连 ASP.NET Core 这种 Web 或 API 应用要做单元测试也是很方便的。其中面向接口和依赖注入…

[刷题记录] luogu网络流24题 及 网络流心得体会 及 经典模型不定期更新

文章目录信息汇总表格飞行员配对方案问题分配问题运输问题数字梯形问题最小路径覆盖问题魔术球问题圆桌问题试题库问题深海机器人问题航空路线问题火星探险问题太空飞行计划问题方格取数问题骑士共存问题最长不下降子序列问题孤岛营救问题汽车加油行驶问题[CTSC1999]家园 / 星际…

2021牛客暑期多校训练营5

2021牛客暑期多校训练营5 题号题目知识点AAway from CollegeBBoxes概率CCheating and StealingDDouble Strings线性dpEEert EsiwtibFFinding PointsGGreater Integer, Better LCMHHolding Two签到IInterval QueriesJJewels最小权匹配KKing of Range尺取法

记录使用 Cake 进行构建并制作 nuget 包

前段时间折腾了一下&#xff0c;总算是把我自己的图片缓存控件&#xff08;https://github.com/h82258652/HN.Controls.ImageEx&#xff09;发布到了 nuget 上&#xff0c;目前已经进入一个比较稳定的版本了&#xff0c;基本没有很严重的 bug 了。其实核心代码早就写完了&#…

2021牛客暑期多校训练营6

题号题目知识点AContracting Convex HullBDefend PonyvilleCDelete EdgesDGambling MonsterEGrowing TreeFHamburger SteakGHasse DiagramHHopping RabbitIIntervals on the RingJDefend Your CountryKStarch Cat

DDD领域驱动设计理论篇 - 学习笔记

一、Why DDD?在加入X公司后&#xff0c;开始了ASP.NET CoreDockerLinux的技术实践&#xff0c;也开始了微服务架构的实践。在微服务的学习中&#xff0c;有一本微软官方出品的《.NET微服务&#xff1a;容器化.NET应用架构指南》是我们学习的葵花宝典&#xff0c;纵观微软官方放…

Intervals on the Ring

Intervals on the Ring 题意&#xff1a; 给出环上的一组区间&#xff0c;需要构造环上的一组区间使得这些区间的交是给定的区间的并 题解&#xff1a; 集合的摩尔定理告诉我们&#xff1a;∪Ai‾∩Ai‾\overline{\cup A_{i}}\cap\overline{A_{i}}∪Ai​​∩Ai​​&#xf…

CodeForces 516E Drazil and His Happy Friends(数学+最短路)

problem 洛谷链接 solution 记 gcd⁡(n,m)d\gcd(n,m)dgcd(n,m)d&#xff0c;则快乐只会在同余 ddd 的关系中传递。 ixn≡ixs⋅d≡i(modd),iym≡iyt⋅d≡i(modd)ixn\equiv ixsd\equiv i\pmod d,iym\equiv iytd\equiv i\pmod dixn≡ixs⋅d≡i(modd),iym≡iyt⋅d≡i(modd)。 所…