[CQOI2012] 局部极小值(状压DP + 容斥 + 搜索)

problem

luogu-P3160

solution

这么小的数据范围,非暴力不状压。暴力 O(28!)O(28!)O(28!) 呵呵呵可以拉走了。

我们不妨从小到大填数字,这样如果局部极小值点还没有填的话,周围的九宫格就一定不能被填。

dp(s,i):dp(s,i):dp(s,i): 局部极小值点的是否填了数字的情况 sss,已经填完了 [1,i][1,i][1,i] 以内的数字。

  • i+1i+1i+1 填入非极小值点影响区域。

    dp(s,i+1)←dp(s,i)∗(cnt−i)dp(s,i+1)\leftarrow dp(s,i)*(cnt-i)dp(s,i+1)dp(s,i)(cnti)

    cnt:cnt:cnt: 除去现在还没有被填的极小值以及其九宫格内的格子,剩下的个子数量,显然要空出 n−cntn-cntncnt 个格子去满足极小值点周围的要求。

    不能简单的用 9×9\times9× 极小值点个数,显然两个极小值的九宫格有可能重叠部分。

  • i+1i+1i+1 填入极小值点。

    那么该极小值一旦被填,就可以释放周围九宫格的限制。

    dp(s∣(1<<j),i+1)←dp(s,i)dp(s|(1<<j),i+1)\leftarrow dp(s,i)dp(s(1<<j),i+1)dp(s,i)

具体可见下方代码。

但是这样 dpdpdp 我们发现一个致命的问题。

我们会计算到『某些九宫格内中心点不是 X\text{X}X,但中心点又恰好满足局部极小值的要求』的情况。

而包含这种情况的方案在题目中是不合法的。题目已经给出了所有局部极小值点,其余点就必须不是。

这里我们就想到了 容斥不好意思我没有想到

我们可以额外多钦定了 kkk 个极小值点,那么算出来的 dpdpdp 应该前面配一个 (−1)k(-1)^k(1)k 容斥出最后的答案。

而可以同时存在的局部极小值点个数并没有多少,顶多 888 个。

所以 kkk 并不会多大。

我们完全可以搜索做。

在这里插入图片描述

code

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define mod 12345678
int n, m, ans;
int px[10], py[10];
char ch[10][10];
int vis[10][10];
int f[1 << 10][30];bool inside( int x, int y ) {if( x < 0 or x >= n or y < 0 or y >= m ) return 0;else return 1;
}int calc() {memset( f, 0, sizeof( f ) );int tot = 0;for( int i = 0;i < n;i ++ )for( int j = 0;j < m;j ++ )if( ch[i][j] == 'X')px[tot] = i, py[tot] = j, ++ tot;f[0][0] = 1;for( int s = 0;s < (1 << tot);s ++ ) {memset( vis, 0, sizeof( vis ) );for( int i = 0;i < tot;i ++ )if( ! (s >> i & 1) )for( int x = -1;x <= 1;x ++ )for( int y = -1;y <= 1;y ++ )if( inside( px[i] + x, py[i] +  y) )vis[px[i] + x][py[i] + y] = 1;int cnt = n * m;for( int i = 0;i < n;i ++ )for( int j = 0;j < m;j ++ )cnt -= vis[i][j];for( int i = 0;i <= cnt;i ++ )if( f[s][i] ) {( f[s][i + 1] += f[s][i] * ( cnt - i ) ) %= mod;for( int j = 0;j < tot;j ++ )if( ! (s >> j & 1) )( f[s | (1 << j)][i + 1] += f[s][i] ) %= mod;}}return f[(1 << tot) - 1][n * m];
}void dfs( int x, int y, int k ) {if( x >= n ) return ( ans += k * calc() ) %= mod, void();if( y >= m ) dfs( x + 1, 0, k );else {dfs( x, y + 1, k );bool flag = 1;for( int i = -1;i <= 1;i ++ )for( int j = -1;j <= 1;j ++ )if( inside( x + i, y + j ) and ch[x + i][y + j] == 'X' )flag = 0;if( flag ) {ch[x][y] = 'X';dfs( x, y + 1, -k );ch[x][y] = '.';}}
}signed main() {scanf( "%lld %lld", &n, &m );for( int i = 0;i < n;i ++ )scanf( "%s", ch[i] );for( int i = 0;i < n;i ++ )for( int j = 0;j < m;j ++ )if( ch[i][j] == 'X' ) for( int x = -1;x <= 1;x ++ )for( int y = -1;y <= 1;y ++ )if( ( x or y ) and inside( i + x, j + y ) and ch[i + x][j + y] == 'X' )return puts("0"), 0;dfs( 0, 0, 1 );printf( "%lld\n", ( ans + mod ) % mod );return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Kubernetes 构建.NET Core 的技术体系

很多公司技术支持岗位的工作&#xff0c;如配置域名&#xff0c;部署环境&#xff0c;修改复位配置&#xff0c;服务重启&#xff0c;扩容缩容&#xff0c;梳理和完善监控&#xff0c;根据开发的需要查找日志等工作&#xff0c;需要和开发进行大量的沟通&#xff0c;如什么是外…

P4062 [Code+#1]Yazid 的新生舞会(分治做法)

P4062 [Code#1]Yazid 的新生舞会 题意&#xff1a; 给出一个序列&#xff0c;求有多少个子区间满足众数的出现次数大于区间长度的一半。 出现次数大于区间长度的一般我们称之为绝对众数 题解&#xff1a; 分治做法 对于一个区间[l,r]&#xff0c;设mid⌊lr2⌋\lfloor \frac…

[CQOI2014] 危桥(网络流)

problem luogu-P3163 solution 这是一道网络流好题&#xff0c;看的着摸不着吃不着。 初读完题&#xff0c;就知道这是一道“脱光了”的最大流。 建图基础版本&#xff1a; 建立额外源汇点。 无向边相同于两条有向边&#xff0c;直接建不影响&#xff0c;危桥流量设成 22…

那些优秀的开发者----汪宇杰:从重视细节,到成就技术专家

汪宇杰&#xff08;Edi Wang&#xff09;&#xff0c;.NET及Windows开发者&#xff0c;2018-2019年度微软最有价值专家&#xff08;Windows Development方向&#xff09;。现担任某金融科技企业的网站开发工程师。他对微软技术有鉴定的信念和不灭的热情&#xff0c;曾在Windows…

P4062 [Code+#1]Yazid 的新生舞会(线段树做法)

P4062 [Code#1]Yazid 的新生舞会&#xff08;线段树做法&#xff09; 题意&#xff1a; 给你一个序列a[1…n]​&#xff0c;求存在绝对众数的子区间个数。 绝对众数指&#xff1a;区间中出现次数最多的那个数&#xff0c;出现次数严格大于区间长度的一半。 题解&#xff1a…

《从零开始学ASP.NET CORE MVC》课程介绍

大家好&#xff0c;欢迎来到52ABP学院&#xff0c;收看我们的 《从零开始学ASP.NET CORE MVC》。ASP.NET Core 简介从2015年开始随时互联网成长&#xff0c;云计算和AI、大数据的爆发&#xff0c;大家从谈论项目信息化到数字化的转型&#xff0c;从ToC产业到ToB产业的转型&…

[ZJOI2015] 地震后的幻想乡(状压dp + 期望)

problem luogu-P3343 solution dp(i):dp(i):dp(i): 当恰好加入第 iii 小边时候&#xff0c;所有点联通的方案数。 则 ans∑idpi(mi)im1ans\sum_i \frac{dp_i}{\binom mi}\frac{i}{m1}ans∑i​(im​)dpi​​m1i​ 。 重点是如何计算出 dp(i)dp(i)dp(i)。 这个恰好的限制不好…

P2152 [SDOI2009]SuperGCD

P2152 [SDOI2009]SuperGCD 题意&#xff1a; 求a和b的最大公约数 a,b<101000010^{10000}1010000 题解&#xff1a; 高精度&#xff0c;java高精度直接有模板&#xff0c;c高精度结合gcd的辗转相减法 对于&#xff1a;a,b的gcd(a,b)有&#xff1a; 若a为奇数&#xff0c…

Docker - 容器部署 Consul 集群

目录 准备 Consul 镜像安装单个 Consul组装集群 Consul启动 Consul 和 Web 管理器Consul 命令简单介绍Web 管理器Server 加入集群Client 加入集群了解 ConsulConsul 使用场景Consul 优势Consul 中的概念说明简介安装总结引用和附件说明本文主要介绍怎么使用 Docker 在 Linux…

[LOJ3153] 三级跳(单调栈 + 线段树)

problem loj3153 solution 有一个显然正确但又不起眼却是正解必备的结论&#xff1a; 考虑 (x,y,z)(x,y,z)(x,y,z) 答案三元对&#xff0c;如果有一个数 i∈(x,y)∧ai≥axi\in(x,y)\wedge a_i\ge a_xi∈(x,y)∧ai​≥ax​&#xff0c;那么 (i,y,z)(i,y,z)(i,y,z) 一定是不劣…

P2167 [SDOI2009]Bill的挑战

P2167 [SDOI2009]Bill的挑战 题意&#xff1a; 有n个长度一样的字符串&#xff0c;字符串的每一位是&#xff1f;或者确定的字母&#xff0c;&#xff0c;求与这 N 个串中的刚好 K 个串匹配的字符串 T 的个数 1<N<15,1<|S|<50 题解&#xff1a; 很明显状态dp 我…

VS2017创建ASP.NET Core Web程序

创建ASP.NET Core Web应用程序如果您使用的是VS2019 请看 VS2019创建ASP.NET Core Web程序在这个视频中我们将讨论可用的不同项目模板及其功能预制的项目模板有什么不同&#xff0c;哪些是可以使用的&#xff0c;以及他们的作用。在Visual Studio2017中创建新的ASP.NET Core 项…

[ZJOI2015] 幻想乡战略游戏(树链剖分 + 线段树二分 + 带权重心)

problem luogu-P3345 solution 这是一个带权重心的题&#xff0c;考察动态点分治。点分治&#xff1f;呵&#xff0c;不可能的&#xff0c;这辈子都不可能写点分治 我们重新考虑重心的性质&#xff1a;以这个点为根时&#xff0c;所有子树的大小不会超过整体大小的一半。 …

巧用linux版powershell,管理linux下的docker

owershell,docker,cli,命令,docker ps,docker image第一章 在linux中搭建docker环境目的&#xff1a;在任意版本的linux&#xff08;物理机&#xff0c;虚拟机&#xff0c;节点机&#xff09;中&#xff0c;安装docker服务。动作&#xff1a;教程略&#xff0c;不是本文主要目的…

P1972 [SDOI2009]HH的项链

P1972 [SDOI2009]HH的项链 题意&#xff1a; 给你一个序列&#xff0c;问这个序列中的种类数 n,m,ai<1e6 题解&#xff1a; 三个方法&#xff1a;莫队(会超时)&#xff0c;树状数组&#xff0c;主席树(会超时) 莫队就是裸题&#xff0c;不讲了&#xff0c;复杂度O(n*sq…

从ASP.NET Core2.2到3.0你可能会遇到这些问题

趁着假期的时间所以想重新学习下微软的官方文档来巩固下基础知识。我们都知道微软目前已经发布了.NET Core3.0的第三个预览版&#xff0c;同时我家里的电脑也安装了vs2019。So&#xff0c;就用vs2019.NET Core3.0来跟着做一下Contoso University这个WEB应用&#xff0c;但是在基…

【学习笔记】整体二分

文章目录引整体二分几道模板题Dynamic Rankings[ZJOI2013]K大数查询[国家集训队]矩阵乘法[THUPC2017] 天天爱射击[CTSC2018]混合果汁引 例1. 给定 nnn 个数 aia_iai​&#xff0c;一次询问&#xff0c;询问区间 [l,r][l,r][l,r] 中的第 kkk 小数。 我们通常想到二分答案&#x…

P2157 [SDOI2009]学校食堂

P2157 [SDOI2009]学校食堂 题意&#xff1a; 小F 的学校在城市的一个偏僻角落&#xff0c;所有学生都只好在学校吃饭。学校有一个食堂&#xff0c;虽然简陋&#xff0c;但食堂大厨总能做出让同学们满意的菜肴。当然&#xff0c;不同的人口味也不一定相同&#xff0c;但每个人…

EntityFramework Core 3.0 Preview

前段时间.Net Core 3.0 发布了&#xff0c;Entity Framework Core 3.0 也发布了Preview版。假期用了一上午大致研究了一遍&#xff0c;同时又体验了一把Visual Studio 2019。总结一下分享给大家&#xff1a;VS2019 新建.Net Core 3.0 Console应用&#xff0c;添加EFCore相关的N…

[luogu-P4299] 首都(并查集 + LCT动态维护树的重心 / 维护虚儿子信息)

problem luogu-P4299 solution 本题考察了很经典的模型&#xff0c;运用了很经典的解法。 本题用到了重心的两个性质&#xff1a; 两棵树合并为同一棵树时&#xff0c;新的重心一定在原来两棵树各自重心的路径上。 重心为根时的最大子树大小最小&#xff0c;不超过 siz/2s…