CF1497E1 Square-free division (easy version)

CF1497E1 Square-free division (easy version)

题意:

这是简单版,此题中 k=0
给出一串长为 n 的序列 a1,a2,a3...ana_1,a_2,a_3...a_na1,a2,a3...an
把它分成尽量少的块使每一块中任意两数的乘积不是一个完全平方数。
输出最少的块数。

题解:

本题是不涉及修改的
其实好想,对于所有数质因子分解,如果任意两个数的乘积是一个完全平方数,两个数的质因子合并后,均为偶数个,因为偶数个就可以被开方掉,说明是平方数
那么我们可以这样,对于每个数aia_iai,我们对其质因子分解,将出现偶数次的质因子删去,只保留奇数次的质因子,就比如质因子7出现了5次,那我们只保留一个质因子7。这样是因为两个数的乘积,只需要考虑出现奇数次的情形
这样处理过后的数组a,如果存在i,ji,ji,j使得ai==aja_i==a_jai==aj,那么就说明这两个数会组成完全数,不能在一个块内
剩下就好做了,直接循环一边,对于第二次出现的数就建立新块

代码:

// Problem: E1. Square-free division (easy version)
// Contest: Codeforces Round #708 (Div. 2)
// URL: https://codeforces.com/contest/{getProblemIndexes(problemCurrentPageList[i][0])[0]}/problem/E1
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// By Jozky#include <bits/stdc++.h>
#include <unordered_map>
#define debug(a, b) printf("%s = %d\n", a, b);
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
clock_t startTime, endTime;
//Fe~Jozky
const ll INF_ll= 1e18;
const int INF_int= 0x3f3f3f3f;
void read(){};
template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar)
{x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...);
}
template <typename T> inline void write(T x)
{if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0');
}
void rd_test()
{
#ifdef ONLINE_JUDGE
#elsestartTime= clock();freopen("data.in", "r", stdin);
#endif
}
void Time_test()
{
#ifdef ONLINE_JUDGE
#elseendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC);
#endif
}
const int maxn= 2e5 + 9;
int a[maxn];
int main()
{//rd_test();int t;read(t);while (t--) {int n, k;cin >> n >> k;int tot= 0;for (int i= 1; i <= n; i++) {cin >> a[i];int now= a[i];for (int j= 2; j * j <= now; j++) {int cnt= 0;while (now % j == 0) {now/= j;cnt++;}for (int k= 1; k <= cnt; k++)a[i]/= j;if (cnt % 2 == 1)a[i]*= j;}}// for (int i= 1; i <= n; i++)// cout << "a[i]=" << a[i] << endl;map<int, int> mp;int ans= 0;for (int i= 1; i <= n; i++) {if (mp[a[i]]) {ans++;mp.clear();mp[a[i]]= 1;}elsemp[a[i]]= 1;}ans++;cout << ans << endl;}return 0;;//Time_test();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/315969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

发布dotNetCore程序到Kubernetes

上一篇《Mac中搭建Kubernetes》介绍了怎样在Mac中搭建单节点的Kubernetes&#xff0c;本文将编写一个dotNetCore的示例程序&#xff0c;并发布到Kubernetes中。环境基本步骤创建dotnetCore示例项目&#xff1b;本地搭建私有registry&#xff0c;或者使用DockerHub&#xff0c;本…

CF1497E2 Square-free division (hard version)

CF1497E2 Square-free division (hard version) 题意&#xff1a; 数组 a 由 n 个正整数构成。你需要将它们分割成最小数量的连续子段&#xff0c;使得每一个子段中的任意两个数&#xff08;不同位置&#xff09;的乘积不为完全平方数。 除此之外&#xff0c;你被允许在分割之…

[Cake] 2. dotnet 全局工具 cake

在上篇博客[Cake] 1. CI中的Cake中介绍了如何在CI中利用Cake来保持与CI/CD环境的解耦。当时dotnet 2.1还未正式发布&#xff0c;dotnet 还没有工具的支持&#xff0c;使得安装cake非常麻烦。不过随着 dotnet tool 的加入&#xff0c;这一问题得到了很好的解决。目前安装cake&am…

CF1497C k-LCM

CF1497C1 k-LCM (easy version) CF1497C2 k-LCM (hard version) 题意&#xff1a; 给定一个整数 n&#xff0c;请找到 k 个和为 n 的正整数a1,a2,....,aka_1,a_2,....,a_ka1​,a2​,....,ak​&#xff0c;使得lcma1,a2,....,ak<n2lcm{a_1,a_2,....,a_k}<\frac{n}{2}lcm…

官博翻译 | .NET Core 即 .NET 的未来

点击上方蓝字关注“汪宇杰博客”文 / Scott Hunter译 / 汪宇杰我们在2014年11月推出了.NET Core 1.0。.NET Core 的目标是借鉴我们过去12年构建、发布和服务.NET Framework的经验去构建更好的产品。这些改进如&#xff1a;并行安装&#xff08;您可以安装新版本&#xff0c;而…

CF1497D Genius

CF1497D Genius 题意&#xff1a; n个问题从i到n编号&#xff0c;第i个问题给出的ci2i,tagi,sic_i2^i,tag_i,s_ici​2i,tagi​,si​ 解决问题i后解决问题j条件是&#xff1a;IQ<|ci−cjc_i-c_jci​−cj​|,同时获得|si−sjs_i-s_jsi​−sj​|分 问题解决得次数和顺序不受限…

微软发布ML.NET 1.0,可一键添加机器学习模型

今天&#xff0c;我们很高兴宣布发布 ML.NET 1.0。ML.NET 是一个免费的、跨平台的开源机器学习框架&#xff0c;旨在将机器学习&#xff08;ML&#xff09;的强大功能引入.NET 应用程序。ML.NET GitHub&#xff1a;https://github.com/dotnet/machinelearning入门 http://dot.…

Codeforces Round #703 (Div. 2)

Codeforces Round #703 (Div. 2) 题号题目知识点AShifting Stacks思维BEastern Exhibition思维C1Guessing the Greatest (easy version)二分C2Guessing the Greatest (hard version)二分DMax Median思维二分EPaired PaymentFPairs of Paths

目前下载VS2017你可能会遇到这个坑

可能现在大伙都已经开始使用VS2019进行开发了。VS2019的下载使用也都很简单。由于工作需要&#xff0c;今天要在笔记本上安装VS2017,结果发现&#xff0c;VS2017的下载变得不是那么容易了&#xff0c;官方的下载方式也隐藏的很深&#xff0c;来来回回折腾了好一会才下载下来&am…

CF1486D Max Median

CF1486D Max Median 题意&#xff1a; 给定一个长度为 n 的序列 a&#xff0c;求所有长度 ≥k 的连续子序列中&#xff0c;中位数的最大值。定义中位数是一个长度为 x 的序列升序排序后的第 ⌊x12⌋\left\lfloor\frac{x1}{2}\right\rfloor⌊2x1​⌋位的值。 题解&#xff1a…

代码整洁之道(Clean Code)- 读书笔记

Sorry, 许久未更新文章了&#xff0c;主要因为刚刚换了一家新公司&#xff0c;忙于组建团队&#xff08;建设、招聘、流程、框架等&#xff09;与熟悉公司业务&#xff0c;还有领导给的其他工作等等&#xff0c;实在是没有时间更新了。最近在和团队分享Bob大叔的《Clean Code》…

cf1499D. The Number of Pairs

cf1499D. The Number of Pairs 题意&#xff1a; 有t组询问&#xff0c;每组询问给定三个整数c&#xff0c;d&#xff0c;x 问有多少对(a,b)使得c∗lcm(a,b)−d∗gcd(a,b)xc*lcm(a,b)-d*gcd(a,b)xc∗lcm(a,b)−d∗gcd(a,b)x 1<t<1e4,1<c,d,x<1e71<t<1e4,1&…

微软Build 2019大会.NET课程视频汇总

点击上方蓝字关注“汪宇杰博客”5月6日至8日&#xff0c;微软在西雅图召开了Build 2019开发者大会。我们关注的.NET领域也迎来了许多激动人心的改进。本文汇总了Build 2019大会上关于.NET的已经公开的视频&#xff0c;欢迎大家观看学习&#xff01;// 注意&#xff1a;以下视频…

Educational Codeforces Round 106 (Rated for Div. 2)

Educational Codeforces Round 106 (Rated for Div. 2) 题号题目知识点ADomino on WindowsillBBinary RemovalsCBinary Removals贪心DThe Number of Pairs推导EChaotic MergeFDiameter CutsGGraph Coloring

黑科技抢先尝 | Windows全新终端初体验(附代码Build全过程)

微软在几天前的build大会上展示了Windows Terminal的威力&#xff0c;由于官宣要在6月中旬才上Microsoft store&#xff0c;还有一个多月要等呢。好在代码已公布在 github, 于是决定自己 build 后体验一番。遇到不少坑&#xff0c;大概整理一下流程&#xff0c;分享给大家。如果…

二项式反演(非详细)

引入 二项式反演又名广义容斥定理 二项式反演可以表示成&#xff1a; f[n]∑i0n(−1)iCnigi⟺gn∑i0n(−1)iCnif[i]f[n]\sum_{i0}^n(-1)^iC_{n}^{i}g_{i}⟺g_{n}\sum_{i0}^{n}(-1)^iC_{n}^{i}f[i]f[n]∑i0n​(−1)iCni​gi​⟺gn​∑i0n​(−1)iCni​f[i] 常用表达为&#xff…

aelf帮助C#工程师10分钟零门槛搭建DAPP私有链开发环境

aelf是一个可扩展的去中心化云计算区块链平台&#xff0c;支持高性能合约并行执行、原生多链数据交互、存储使用高性能分布式数据库。aelf整个系统可以在windows、osx及linux运行&#xff0c;团队在osx环境下开发&#xff0c;基于.net core DAPP开发1.安装.net core及protobufh…

不容易系列之一

不容易系列之一 题意&#xff1a; n个数&#xff0c;求n个人错排(全部错误)的方案数 题解&#xff1a; 这题地推可以求&#xff0c;咱们这里用二项式反演来做 设f(i)为恰好有i个人错排f(i)为恰好有i个人错排f(i)为恰好有i个人错排&#xff0c;g(i)为最多i个人错排g(i)为最多…

Build 2019 上微软的开源动作有点不一样

微软今年举办的 Build 开发者大会可谓是抢足风头&#xff0c;大会第一天就放了不少大招&#xff1a;宣布新的命令行终端 Windows Terminal、Windows 10 的 Linux 子系统 WSL 2 将运行真正的 Linux 内核、跳过 .NET 4 宣布 .NET 5 的计划、宣布 Web 版本的 VS Code (Visual Stud…

P1437 [HNOI2004]敲砖块

P1437 [HNOI2004]敲砖块 题意&#xff1a; 在一个凹槽中放置了 n 层砖块、最上面的一层有 n 块砖&#xff0c;从上到下每层依次减少一块砖。每块砖都有一个分值&#xff0c;敲掉这块砖就能得到相应的分值&#xff0c;如下图所示&#xff1a; 14 15 4 3 2333 33 76 22 …