cf1499D. The Number of Pairs
题意:
有t组询问,每组询问给定三个整数c,d,x
问有多少对(a,b)使得c∗lcm(a,b)−d∗gcd(a,b)=xc*lcm(a,b)-d*gcd(a,b)=xc∗lcm(a,b)−d∗gcd(a,b)=x
1<=t<=1e4,1<=c,d,x<=1e71<=t<=1e4,1<=c,d,x<=1e71<=t<=1e4,1<=c,d,x<=1e7
题解:
可以这样设
设a=p∗k,b=q∗ka=p*k,b=q*ka=p∗k,b=q∗k,那么lcm(a,b)=p∗q∗k,gcd(a,b)=klcm(a,b)=p*q*k,gcd(a,b)=klcm(a,b)=p∗q∗k,gcd(a,b)=k,其中p和q是互质的
将这些值带入数字中得:c∗p∗q∗k−d∗k=xc*p*q*k-d*k=xc∗p∗q∗k−d∗k=x
两边同时除以k
c∗p∗q−d=xkc*p*q-d=\frac{x}{k}c∗p∗q−d=kx
k必须被x整除这个式子才成立
设x=t∗kx=t*kx=t∗k
那么c∗p∗q−d=tc*p*q-d=tc∗p∗q−d=t, t是x的因子
继续化简
pq=t+dcpq=\frac{t+d}{c}pq=ct+d,c必须是t+d的因子式子才成立
设s=t+dcs=\frac{t+d}{c}s=ct+d
那么p∗q=sp*q=sp∗q=s
我们之前已经定义了p和q是互质的,而p和q又是s的因子,因此就是看s有多少个不同的质因子数量,如果有num个,两两可以组成(a,b)对,因此就有2num2^{num}2num
如何求一个数有多少个不同的质因子数量,我们可以在线性筛的过程中求出
这样对于每次询问,我们先求出x的所有因子t,然后判断t+d是否是c的倍数,答案就是1<<((t+d)/c)
注意,线性筛要求2e7以内的,因为((t+d)/c)最大可以到2e7
代码:
// Problem: D. The Number of Pairs
// Contest: Educational Codeforces Round 106 (Rated for Div. 2)
// URL: https://codeforces.com/contest/{getProblemIndexes(problemCurrentPageList[i][0])[0]}/problem/D
// Memory Limit: 512 MB
// Time Limit: 2000 ms
// By Jozky#include <bits/stdc++.h>
#include <unordered_map>
#define debug(a, b) printf("%s = %d\n", a, b);
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
clock_t startTime, endTime;
//Fe~Jozky
const ll INF_ll= 1e18;
const int INF_int= 0x3f3f3f3f;
void read(){};
template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar)
{x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...);
}
template <typename T> inline void write(T x)
{if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0');
}
void rd_test()
{
#ifdef ONLINE_JUDGE
#elsestartTime= clock();freopen("data.in", "r", stdin);
#endif
}
void Time_test()
{
#ifdef ONLINE_JUDGE
#elseendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC);
#endif
}
const int maxn= 2e7 + 20;
int prime[maxn];
int vis[maxn];
ll num[maxn];
int cnt= 0;
void Prime(int N)
{for (int i= 2; i <= N; i++) {if (!vis[i]) {prime[++cnt]= i;num[i]= 1;}for (int j= 1; j <= cnt && i * prime[j] <= N; j++) {vis[i * prime[j]]= 1;if (i % prime[j] == 0) {num[i * prime[j]]= num[i];break;}num[i * prime[j]]= num[i] + 1;}}
}
int fac[maxn];
signed main()
{//rd_test();int t;read(t);Prime(20000010);while (t--) {int c, d, x;read(c, d, x);int tot= 0;for (int i= 1; i * i <= x; i++) {if (x % i != 0)continue;fac[++tot]= i;if (i * i != x)fac[++tot]= x / i;}ll ans= 0;for (int i= 1; i <= tot; i++) {if ((fac[i] + d) % c == 0) {int s= (fac[i] + d) / c;ans+= (1ll << num[s]);}}cout << ans << endl;}//Time_test();
}