CF594D. REQ
Solution
离线询问,按左端点排序。
对于每个质因数都会有p−1p\frac{p-1}{p}pp−1的贡献,考虑把贡献维护在当前左端点右边最早出现的ppp倍数的位置上。
每次lll增加的时候,把这一位变成1,并把这一位的质因数的贡献往它之后的位置推,对于每组询问求前缀积,树状数组维护即可。
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int MAXN=1000005;
const int INF=0x3f3f3f3f;
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
vector<int> V[MAXN],S[MAXN];
struct Qnode{int l,r,id; } Q[MAXN];
int pnum=0,flag[MAXN],prime[MAXN],a[MAXN],inv[MAXN],Ans[MAXN],n,num[MAXN];
int quick_pow(int x,int y)
{int ret=1;for (;y;y>>=1){if (y&1) ret=1ll*ret*x%mods;x=1ll*x*x%mods;}return ret;
}
void Init(int n,int m)
{for (int i=2;i<=m;i++)if (!flag[i]){prime[++pnum]=i; for (int j=i;j<=m;j+=i) flag[j]=pnum;}for (int i=1;i<=n;i++){int t=a[i];for (int j=1;j<=pnum&&prime[j]*prime[j]<=t;j++)if (t%prime[j]==0){while (t%prime[j]==0) t/=prime[j];V[i].PB(j),S[j].PB(i);}if (t>1) V[i].PB(flag[t]),S[flag[t]].PB(i);}inv[0]=1;for (int i=1;i<=m;i++) inv[i]=quick_pow(i,mods-2);
}int mul[MAXN];
void add(int x,int y) { if (!x) return; for (;x<=n;x+=x&(-x)) mul[x]=1ll*mul[x]*y%mods; }
int query(int x) { int ans=1; for (;x;x-=x&(-x)) ans=1ll*ans*mul[x]%mods; return ans; }
signed main()
{n=read();for (int i=1;i<=n;i++) a[i]=read();Init(n,1e6);int m=read();for (int i=1;i<=m;i++) Q[i].l=read(),Q[i].r=read(),Q[i].id=i;sort(Q+1,Q+m+1,[&](Qnode x,Qnode y){ return (x.l<y.l)||(x.l==y.l&&x.r<y.r); });for (int i=0;i<=n*2;i++) mul[i]=1;for (int i=1;i<=n;i++) {add(i,a[i]);for (auto v:V[i])if (S[v][0]==i) add(i,1ll*(prime[v]-1)*inv[prime[v]]%mods);}for (int i=1,l=1;i<=m;i++){while (l<Q[i].l){add(l,inv[a[l]]);for (auto v:V[l]){if (num[v]<S[v].size()-1) add(S[v][num[v]+1],1ll*(prime[v]-1)*inv[prime[v]]%mods),num[v]++;add(l,1ll*prime[v]*inv[prime[v]-1]%mods);}l++;}Ans[Q[i].id]=query(Q[i].r);}for (int i=1;i<=m;i++) printf("%d\n",Ans[i]);return 0;
}