2021牛客暑期多校训练营3 I Kuriyama Mirai and Exclusive Or 差分 + 二进制分治

传送门

文章目录

  • 题意:
  • 思路:

题意:

给你一个数组aaa,让你实现以下两个操作之后输出数组aaa
在这里插入图片描述
n≤6e5,ai≤230−1n\le6e5,a_i\le2^{30}-1n6e5,ai2301

思路:

下面介绍的思路清奇,反正我想不到。
对于两个操作,显然对于异或操作顺序是没有影响的,所以对于第一个操作可以直接打个差分即可。
对于第二个操作,我们本能的想把括号拆开,但是括号中是加法对于异或来说没有分配律,所以考虑(x+(i−l))(x+(i-l))(x+(il))将加法转换成或,假设xxx111的最低位置在2k2^k2k处,如果i−l<2ki-l<2^kil<2k,那么此时(x+(i−l))=(x∣(i−l))(x+(i-l))=(x|(i-l))(x+(il))=(x(il)),此时ai⊕(x+(i−l))=ai⊕(x∣(i−l))=ai⊕x⊕(i−l)a_i\oplus (x+(i-l))=a_i\oplus (x|(i-l))=a_i\oplus x \oplus (i-l)ai(x+(il))=ai(x(il))=aix(il),也就是先让iii位置异或上xxx,让后让[i,i+2k−1][i,i+2^k-1][i,i+2k1]的位置分别异或上0,1,...,2k−10,1,...,2^k-10,1,...,2k1。所以我们记一个f[k][i]f[k][i]f[k][i]数组表示是否需要将[i,i+2k−1][i,i+2^k-1][i,i+2k1]的位置分别异或上0,1,...,2k−10,1,...,2^k-10,1,...,2k1,之后将x+(1<<k),l+(1<<k)x+(1<<k),l+(1<<k)x+(1<<k),l+(1<<k)即可。
这样一直推下去,到最后会剩下一段小区间,这段区间我们直接倒着来一遍即可,因为他的后k−1k-1k1位都是000,所以也满足上面的性质。
我们记了一个fff数组,个人感觉怎么用它也是一个比较难想到的点。我们可以用类似倍增实则是倍增的逆过程来递推下去,是一种分治的思想。
考虑当前遍历到了f[i][k]f[i][k]f[i][k],那么我们可以将其分成两段来看,两段分别是[i,i+2k−1−1],[i+2k−1,i+2k−1][i,i+2^{k-1}-1],[i+2^{k-1},i+2^{k}-1][i,i+2k11],[i+2k1,i+2k1]
对于第一段,我们直接将f[i][k−1]f[i][k-1]f[i][k1]标记一下,让后等分治下去处理即可。对于
对于第二段,我们将f[i+2k−1][k−1]f[i+2^{k-1}][k-1]f[i+2k1][k1]标记一下,这样还不够,因为这一位及其之后应该异或上2k−1,2k−1+1,...,2k−12^{k-1},2^{k-1}+1,...,2^k-12k1,2k1+1,...,2k1,根据上面的转换公式,我们可以将i+2k−1i+2^{k-1}i+2k1差分数组的位置异或上2k−12^{k-1}2k1即可,这样就可以不断的分治递推下去,代码写起来很像倍增的逆过程。。

// Problem: Kuriyama Mirai and Exclusive Or
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/11254/I
// Memory Limit: 131072 MB
// Time Limit: 6000 ms
// 
// Powered by CP Editor (https://cpeditor.org)//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;int n,m;
int a[N];
int d[N],f[30][N];int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);scanf("%d%d",&n,&m);for(int i=1;i<=n;i++) scanf("%d",&a[i]);while(m--) {int op,l,r,x; scanf("%d%d%d%d",&op,&l,&r,&x);if(op==0) d[l]^=x,d[r+1]^=x;else {int k=0;while(l+(1<<k)-1<=r) {if(x>>k&1){int now=l+(1<<k);d[l]^=x; d[now]^=x;f[k][l]^=1;x+=(1<<k); l=now;	}k++;}while(l<=r) {if(l+(1<<k)-1<=r) {int now=l+(1<<k);d[l]^=x; d[now]^=x;f[k][l]^=1;x+=(1<<k); l=now;	}k--;}}}for(int i=29;i>=1;i--) {for(int j=1;j<=n;j++) {if(f[i][j]) {f[i-1][j]^=1;f[i-1][j+(1<<(i-1))]^=1;d[j+(1<<(i-1))]^=(1<<(i-1));d[j+(1<<i)]^=(1<<(i-1));}}}for(int i=1;i<=n;i++) d[i]^=d[i-1];for(int i=1;i<=n;i++) printf("%d ",a[i]^d[i]);return 0;
}
/**/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Lock VS Monitor

介绍介绍对开发人员来说&#xff0c;处理关键代码部分的多线程应用程序是非常重要的。Monitor和lock是c#语言中多线程应用程序中提供线程安全的方法(lock关键字的本质就是对Monitor的封装)。两者都提供了一种机制来确保只有一个线程同时执行代码&#xff0c;以避免代码功能被其…

程序员修神之路--做好分库分表其实很难之二

菜菜哥&#xff0c;上次听你给我讲了分库的情况后&#xff0c;我明白了很多&#xff0c;能再给我讲讲分表吗有收获就好&#xff0c;分表其实有很多情况和分库类似还有不一样的情况吗&#xff1f;有呀&#xff0c;本来数据库和表是不同层面的东西&#xff0c;肯定有差异那你给讲…

2021牛客暑期多校训练营3 B Black and white 最小生成树 + 思维

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 思路&#xff1a; 对于每个数的位置(i,j)(i,j)(i,j)&#xff0c;如果将这个位置染黑&#xff0c;那么我们连一个i−>jni->jni−>jn的边&#xff0c;可以发现我们的操作不影响连通性。如果想要全部染…

关于WinForms的跨显示器DPI自适应

点击上方蓝字关注“汪宇杰博客”导语WinForms 是运行在Windows上的传统.NET桌面应用技术框架。由于历史原因&#xff0c;它对高DPI以及跨不同DPI屏幕的支持有些问题&#xff0c;本文将探索尽可能的解决方案。Windows 的“黑历史”Windows 系统的默认DPI&#xff08;更确切的说法…

.NET开发框架(九)-NLB网络负载平衡配置实战(视频)

&#xff08;NLB配置实战教程-有声视频-第二节&#xff09;请持续关注公众号&#xff0c;第三节&#xff08;NLBARR)正在录制中~第六章IIS负载均衡教程&#xff0c;至今共有37人参与学习尚未学习第六章-IIS负载均衡-视频教程的童靴&#xff0c;赶紧跟上进度&#xff0c;别掉队了…

C#各版本新增加功能

本系列文章主要整理并介绍 C# 各版本的新增功能。C#8.0 于 2019年4月 随 .NET Framework 4.8 与 Visual Studio 2019 一同发布&#xff0c;但是当前处于预览状态。预计在2019年9月正式发布。目前提供以下功能可供试用&#xff1a;Readonly 成员默认接口成员【*重要&#xff0c;…

宣告推出.NET Core 3.0 Preview 7

译&#xff1a;艾心0626今天&#xff0c;我们宣布推出.NET Core 3.0 Preview 7。我们已经从创建新特性阶段过渡到了完善版本阶段。对于接下来的预览版&#xff0c;我们将把重点放在质量(改进)上。在Windows&#xff0c;macOS和Linux上下载.NET Core 3.0 Preview 7。.NET Core 3…

基于Masstransit实现Eventbus的功能

Masstransit 是一个非常优秀的基于消息进行通信的分布式应用程序框架&#xff0c;详情参考官网。在介绍AA.ServiceBus之前&#xff0c;先介绍下几个概念.分布式分布式系统如何定义&#xff1f;这里引用一下Distributed Systems Concepts and Design(Third Edition)中的一句话&a…

微软解释为什么Rust是系统编程的最佳选择

上周&#xff0c;MSRC&#xff08;微软安全响应中心&#xff09;透露出拥抱 Rust 的打算&#xff0c;随后他们将这个话题扩展为一个系列&#xff0c;进一步阐述了使用安全的系统编程语言的的必要性&#xff0c;以及选择 Rust 的原因。在该系列最新一篇文章中&#xff0c;MSRC 团…

你可能不知道的Docker资源限制

本篇内容涉及Docker的内存与CPU限制&#xff0c;可以用于在实际开发中为指定容器设置限制最大使用的资源量&#xff0c;预计阅读时间为5分钟。01—What is 资源限制&#xff1f;默认情况下&#xff0c;容器是没有资源限制的&#xff0c;它会尽可能地使用宿主机能够分配给它的资…

东南亚的IT公司,我劝你善良!

来源公众号&#xff1a;半佛仙人&#xff08;ID&#xff1a;banfoSB&#xff09;“真的救我一条‘狗命’&#xff0c;可以吗&#xff0c;谢谢您了&#xff0c;我真的撑不住了。”5月3日&#xff0c;小巴在朋友圈看到这条信息&#xff0c;附着一张长图&#xff0c;定位&#xff…

小白开学Asp.Net Core 《九》

小白开学Asp.Net Core 《九》 — — 前端篇&#xff08;不务正业&#xff09;在《小白开学Asp.Net Core 三》中使用了X-admin 2.x 和 Layui将管理后端的界面重新布局了&#xff0c;里面简单的介绍了layui table 的使用以及页面table所需的数据做了简单的封装。今天扩展学习下。…

.net持续集成sonarqube篇之sonarqube安装与基本配置

Sonarqube下载与安装Sonarqube下载地址是:https://www.sonarqube.org/downloads/下载版本有两个,一个是长期支持版,另一个是最新版,此处安装的是最新版,目前版本是7.3,下载的时候点击醒目的蓝色按钮即可(此时下载的是社区版),下面有三个无底色按钮下载链接,分别对应的是开发者版…

Codeforces Round #296 (Div. 1) D. Fuzzy Search FFT匹配字符串

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; n,m,k≤2e5n,m,k\le2e5n,m,k≤2e5 思路&#xff1a; 直接考虑fftfftfft来匹配字符串。 由于kkk是给定的&#xff0c;所以难度低了很多&#xff0c;普通的字符串匹配不能处理这种可以范围相等的情况&#xf…

迁移 WinForm 应用从 dotnet framework 到 dotnetcore3.0

迁移 WinForm 应用从 dotnet framework 到 dotnetcore3.0Intro微软从 dotnetcore3.0 开始已经开始支持 wpf 以及 winform 的开发&#xff0c;dotnet core 3.0 preview7 已经发布&#xff0c;官方称已经可以准备上生产了 Production Ready迁移这篇WPF的迁移还是比较不错的&#…

HDU - 6992 Lawn of the Dead 线段树 + 思维

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 给你一张n∗mn*mn∗m的图&#xff0c;其中有kkk个点不能走&#xff0c;你只能向下和向右走&#xff0c;问你能到达多少点。 n,m,k≤1e5n,m,k\le1e5n,m,k≤1e5 思路&#xff1a; 可以发现每个点如果其左边和…

EZNEW.NET开发框架100%重磅开源

EZNEW.NET是一套基于领域驱动开发(DDD)为指导思想的企业级项目通用开发框架。通过将当前主流的开发技术和最佳的开发实践相结合&#xff0c;将开发中常见且严重影响开发效率的繁琐技术细节进行了模块化的封装&#xff0c;让开发人员能将更多更多精力聚焦在系统业务的分析中去&a…

黑暗爆炸OJ 3028. 食物 生成函数

传送门 文章目录题意&#xff1a;思考题意&#xff1a; 思考 考虑将每个条件转换成生成函数&#xff1a; (1)f1(x)1x2...11−x2(1)f_1(x)1x^2...\frac{1}{1-x^2}(1)f1​(x)1x2...1−x21​ (2)f2(x)1x1−x21−x(2)f_2(x)1x\frac{1-x^2}{1-x}(2)f2​(x)1x1−x1−x2​ (3)f3(x)1x…

「Azure」数据分析师有理由爱Azure之一-Azure能带给我们什么?

前面我们以相同的方式从数据分析师的视角介绍了Sqlserver&#xff0c;本系列亦同样地延续下去&#xff0c;同样是挖掘数据分析师值得使用的Azure云平台的功能。因云平台功能太多&#xff0c;笔者所接触的面也十分有限&#xff0c;有更专业的读者欢迎补充。对云服务的一点点小认…

POJ - 3734 Blocks 指数生成函数

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 一段长度为nnn的序列&#xff0c;你有红黄蓝绿四种颜色的砖块&#xff0c;问你铺砖的方案数&#xff0c;每块砖长度为111&#xff0c;其中红黄颜色个数必须为偶数。 思路&#xff1a; 考虑多重集合排列数&…