【清华集训2014】Sum)(类欧几里得算法)

【清华集训2014】Sum

在这里插入图片描述
然后本质上我们需要求解的就是那个带根号式子的奇偶性,然后我们发现这个式子很像是类欧几里得算法,求解一个斜率为无理数直线下的整点个数,然后我们直接对于一般形式求解,那么就是每次利用整数部分将斜率减小,然后交换枚举顺序讨论贡献,这样就可以得到一个规模更小的问题,重复这个过程直到n变为0.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一本让我多花2倍时间读的书

这里是Z哥的个人公众号每周五11:45 按时送达当然了,也会时不时加个餐~我的第「87」篇原创敬上Hi,大家好,我是Z哥。熟悉我的小伙伴应该知道,我平时看书大多都很快,之前还把自己的速读技巧分享给了…

P3355 骑士共存问题(网络流)

P3355 骑士共存问题 经典的最大独立集问题,最大独立集就是最小点覆盖的补集,因为最小点覆盖等于最大匹配,所以最大独立集等于点数减去最大匹配。

[NOI2005]月下柠檬树 (自适应辛普森)

P4207 [NOI2005]月下柠檬树 如图,我们要求的面积就是这些圆形跟梯形的组合,由于投射到地面上,显然有h′htanθh \frac{h}{tan \theta}h′tanθh​,由此我们就可以开始推导这个f(x)f(x)f(x)函数了。 所以转换为我们要推导出直线a…

Kong 1.3发布,原生gRPC代理、上游TLS交叉认证

Kong 1.3 发布了,此版本亮点包括支持原生 gRPC 代理、上游 TLS 交叉认证,以及一系列新功能和性能改进。原生 gRPC 代理越来越多的用户转向微服务架构,并且希望有对原生 gRPC 代理的支持,Kong 1.3 解决了这个问题,为支持…

自适应辛普森(算法简要 + 模板)

简述: 对于普通的二次函数有f(x)ax2bxcf(x) ax ^ 2 bx cf(x)ax2bxc,原函数F(x)ax33bx22cxF(x) \frac{a x^3}{3} \frac{bx ^2}{2} cxF(x)3ax3​2bx2​cx。 有 ⎰lrf(x)F(r)−F(l)a3(r−l)3b2(r−l)2c(r−l)(r−l)6(2a(l2r2lr)3b(lr)c)(r−l)6((al…

P3358 最长k可重区间集问题(网络流:串联思想)

P3358 最长k可重区间集问题 这是一个经典模型,给定n个开区间,选择一些区间使得每个位置被覆盖次数不超过k,并最大化选择的区间长度之和。 首先一个直接的想法就是每一个区间匹配了它所对应的点,但是我们要求选择一个区间就必须要…

对Windows桌面应用程序进行UI自动化测试

所谓UI自动化测试,就是模拟一个用户,对应用程序的UI进行操作,以完成特定场景的功能性集成测试。要对Windows桌面应用程序进行UI自动化测试,目前可选的技术主要是两种:VS自带的CodedUI Test和AppiumWinAppDriver。但是&…

2019年ICPC银川区域赛 Easy Problem(简单莫比乌斯函数 + 欧拉降幂)

Easy Problem ∑a11m∑a21m∑a31m⋯∑an−1m∑anm[gcd(a1,a2,a3,…,an−1,an)d](a1,a2,a3,…,an−1,an)kdkd∑a11md∑a21md∑a31md⋯∑an−1md∑anmd[gcd(a1,a2,a3,…,an−1,an)1](a1,a2,a3,…,an−1,an)kdkd∑i1mdikdμ(i)∑a11mid∑a21mid∑a31mid⋯∑an−11mid∑an1mid(∏j1…

P3357 最长k可重线段集问题(网络流/串联/拆点)

P3357 最长k可重线段集问题 对于n条开线段,选择一个子集使得任意xp和子集相交的直线个数小于等于k,并使得选择的线段长度之和最大。 这道题看上去和区间集没有什么区别,只是费用发生变化,但是要注意一个特殊情况,那就…

项目实战中如何使用抽象类和接口

引子:时常会有这么一个疑惑,抽象类和接口功能好像,真正用起来该如何抉择呢??好问题。。来看看书上怎么说的(C#7.0本质论)虽然方法可在基类中声明为抽象成员,但是!&#x…

番茄日志发布1.0.3版本-增加Kafka支持

番茄日志(TomatoLog)能做什么可能你是第一次听说TomatoLog,没关系,我可以从头告诉你,通过了解番茄日志,希望能帮助有需要的朋友,番茄日志处理将大大降低你采集、分析、处理日志的过程。介绍Toma…

Java String类型变量的比较问题

今天写程序的时候,发现了一个很奇怪的问题,代码如下: if((address.getCountry())!"国家"){ ad.insertAddress(address); //将只有国家、省份、城市三列的Address对象插入到数据库表格中 } 其中,我设置了断点进行调试…

P2494 [SDOI2011]保密(网络流/最小割/01分数规划)

P2494 [SDOI2011]保密 这道题是一个很综合的题目 首先有一个二分图,到达一个点就可以到达所有该点相连的边,然后需要覆盖所有边,然后给定一张图你从起点出发然后可以到达二分图的节点,保证没有环,每条边有时间和花费&…

B. Product(2019ICPC西安邀请赛)(杜教筛)

Product ∑i1n∑j1n∑k1ngcd⁡(i,j)[k∣gcd⁡(i,j)]∑k1n∑i1nk∑j1nkgcd⁡(ik,jk)∑k1nk∑i1nk∑j1nkgcd⁡(i,j)∑k1nk∑d1nkd∑i1nkd∑j1nkd[gcd⁡(i,j)1]∑k1nk∑d1nkd(∑i1nkd2ϕ(i)−1)Tkd∑T1n∑k∣TkTk(∑i1nT2ϕ(i)−1)∑T1nTσ0(T)(∑i1nT2ϕ(i)−1)\sum_{i 1} ^{n} …

ArangoDB 3.5发布:流事务API、蒙面数据、搜索性能大幅提升、最短路径功能

ArangoDB 3.5 发布了。ArangoDB 是一个分布式原生的多模型数据库,具有灵活的文档、图形和键值数据模型。使用方便的 SQL 查询语言或 JavaScript 扩展构建高性能应用程序。此版本亮点包括:期待已久的 Streaming Transactions API,可以直接使用…

Java StringBuffer相关解惑

在编程过程中遇到的StringBuffer初始化以及赋值的时候,遇到的问题。 StringBuffer sbnew StringBuffer(); // StringBuffer sb1new StringBuffer(1000); // System.out.println("sb capacity:"sb.capacity()); //默认容量是16,StringB…

P3511 [POI2010]MOS-Bridges(网络流/欧拉回路)

P3511 [POI2010]MOS-Bridges 给出一个图,边正着走和反着走的边权不同,求解最大边权最小的欧拉回路,输出方案。 首先看到最大边权最小我们就可以想到二分答案,然后现在在剩余的图上我们要判断是否存在欧拉回路,我们可…

Easy Math(ACM-ICPC 2018 徐州赛区网络预赛)(递归 + 杜教筛)

Easy Math 推式子 ∑i1mμ(in)∑i1mμ(indd),d是n的一个质因子i,d互质项有(−∑i1mμ(ind)),由于减去了多余的非互质项,所以加上,−∑i1mμ(ind)∑i1mdμ(idnd)−∑i1mμ(ind)∑i1mdμ(in)\sum_{i 1} ^{m} \mu(in)\\ \sum_{i 1…

英雄会在线编程题目(请大家不吝赐教)

<span style"font-size:18px;">最近看了一道英雄会在线编程题目&#xff0c;题目的介绍如下&#xff1a;</span> <span style"font-size:18px;"></span> <span style"font-size:18px;">题目详情&#xff1a;</…

P2304 [NOI2015] 小园丁与老司机(网络流/上下界网络流)

P2304 [NOI2015] 小园丁与老司机 平面上有n个点&#xff0c;每次可以向左、右、上、左上45度、右上45度移动&#xff0c;然后直线移动到达第一个没有到过的点&#xff0c;如果没有这样的点就不能移动&#xff0c;求解一条最长路&#xff0c;然后求解将所有可能不是左右移动的道…