番茄日志发布1.0.3版本-增加Kafka支持

640?wx_fmt=gif


番茄日志(TomatoLog)能做什么

可能你是第一次听说TomatoLog,没关系,我可以从头告诉你,通过了解番茄日志,希望能帮助有需要的朋友,番茄日志处理将大大降低你采集、分析、处理日志的过程。

介绍

640?wx_fmt=png

TomatoLog 是一个基于 .NETCore 平台的日志处理组件,包含客户端、服务端,非常容易使用和部署。

多客户端实现

        TomatoLog 的客户端和服务端目前都是基于 .NETCore 版本,客户端提供了三种日志流传输方式,目前实现了 Redis/RabbitMQ/Kafka流。如果希望使用非 .NETCore 平台的客户端,你可以自己开放其它第三方语言的客户端,通过实现 TomatoLog 传输协议,将数据传送到管道(Redis/RabbitMQ/Kafka)中即可。

强大的日志存储方式

       TomatoLog 服务端还提供了三种存储日志的方式,分别是 File、MongoDB、Elasticsearch,存储方式可以通过配置文件指定。在 TomatoLog 服务端,我们还提供了一个Web 控制台,通过该控制台,可以对日志进行查询、搜索,对服务过滤器进行配置,警报配置、通知发送等等

灵活多样的日志报警配置

     其中,可使用的警报通知方式有:SMS 和 Email 两种方式,但是,SMS 其本质是一个 Http 请求,通过 SMS 的配置,可以实现向所有提供了 Http 接口的网关发送通知。

640?wx_fmt=gif

我好累丫

为了开发支持Kafka,还得学习Kafka/Zookeeper,为了使用Kafka-Manager控制台,还学习Scala/sbt编译雅虎这个破项目,控制台我就起了四个,不说了,看图。

640?wx_fmt=png


TomatoLog-1.0.3 版本

TomatoLogServer 服务器版本 1.0.3 ,主要增加了对Kafka的支持,服务端做了一些优化,在配置上,几乎没有改动,只需要在原来的基础上增加Kafka配置即可

"Kafka": {	"Group": "TomatoLogServer",	"BootstrapServers": "127.0.0.1:9092",	"Topic": "TomatoLog"	}

同时也增加了Kafka客户端的支持,当前版本为:1.0.3

Install-Package TomatoLog.Client.Kafka

使用方式和其它Redis/RabbitMQ客户端是没有任何区别的,主要看下面的 WriteLogAsync() 方法,只要做好了 TomatoLogClientKafka 的配置,剩下的,就是调用 Exception 的扩展方法 ex.AddTomatoLogAsync()


番茄日志服务端控制台长什么样

首页看日志列表

640?wx_fmt=png

日志详情、弹出查看详情、日志搜索、支持ES/MongoDB/File搜索

640?wx_fmt=png


全局日志处理、警报配置

640?wx_fmt=png


针对单个项目的详细日志处理、警报配置

640?wx_fmt=png


极简风格

不管是从项目结构还是解决方案,我都强调简单就是最美的根本要求,解决方案的内容虽然看起来很多,但是你也只需要按需引用其中一个客户端就可以了,服务端更是如此,全站都打包在一个 .NETCore 的应用程序中,程序的警报配置都是存储在配置文件中的,无需数据库支持。

看到这里,其实完全就可以点赞了。谢谢大家!

640?wx_fmt=gif


别走,我还有几个开源工具

优秀的微服务网关Kong的.NETCore中唯一客户端 https://github.com/lianggx/Kong.Net

基于.NETCore+PostgreSQL的快速开发脚手架 https://github.com/lianggx/mystaging

Asp.NETCore轻松学系列的开源实例代码 https://github.com/lianggx/EasyAspNetCoreDemo

好了,这下我真的没啥家底了,都抖露给你们看完了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314232.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java String类型变量的比较问题

今天写程序的时候,发现了一个很奇怪的问题,代码如下: if((address.getCountry())!"国家"){ ad.insertAddress(address); //将只有国家、省份、城市三列的Address对象插入到数据库表格中 } 其中,我设置了断点进行调试…

P2494 [SDOI2011]保密(网络流/最小割/01分数规划)

P2494 [SDOI2011]保密 这道题是一个很综合的题目 首先有一个二分图,到达一个点就可以到达所有该点相连的边,然后需要覆盖所有边,然后给定一张图你从起点出发然后可以到达二分图的节点,保证没有环,每条边有时间和花费&…

B. Product(2019ICPC西安邀请赛)(杜教筛)

Product ∑i1n∑j1n∑k1ngcd⁡(i,j)[k∣gcd⁡(i,j)]∑k1n∑i1nk∑j1nkgcd⁡(ik,jk)∑k1nk∑i1nk∑j1nkgcd⁡(i,j)∑k1nk∑d1nkd∑i1nkd∑j1nkd[gcd⁡(i,j)1]∑k1nk∑d1nkd(∑i1nkd2ϕ(i)−1)Tkd∑T1n∑k∣TkTk(∑i1nT2ϕ(i)−1)∑T1nTσ0(T)(∑i1nT2ϕ(i)−1)\sum_{i 1} ^{n} …

ArangoDB 3.5发布:流事务API、蒙面数据、搜索性能大幅提升、最短路径功能

ArangoDB 3.5 发布了。ArangoDB 是一个分布式原生的多模型数据库,具有灵活的文档、图形和键值数据模型。使用方便的 SQL 查询语言或 JavaScript 扩展构建高性能应用程序。此版本亮点包括:期待已久的 Streaming Transactions API,可以直接使用…

Java StringBuffer相关解惑

在编程过程中遇到的StringBuffer初始化以及赋值的时候,遇到的问题。 StringBuffer sbnew StringBuffer(); // StringBuffer sb1new StringBuffer(1000); // System.out.println("sb capacity:"sb.capacity()); //默认容量是16,StringB…

P3511 [POI2010]MOS-Bridges(网络流/欧拉回路)

P3511 [POI2010]MOS-Bridges 给出一个图,边正着走和反着走的边权不同,求解最大边权最小的欧拉回路,输出方案。 首先看到最大边权最小我们就可以想到二分答案,然后现在在剩余的图上我们要判断是否存在欧拉回路,我们可…

Easy Math(ACM-ICPC 2018 徐州赛区网络预赛)(递归 + 杜教筛)

Easy Math 推式子 ∑i1mμ(in)∑i1mμ(indd),d是n的一个质因子i,d互质项有(−∑i1mμ(ind)),由于减去了多余的非互质项,所以加上,−∑i1mμ(ind)∑i1mdμ(idnd)−∑i1mμ(ind)∑i1mdμ(in)\sum_{i 1} ^{m} \mu(in)\\ \sum_{i 1…

英雄会在线编程题目(请大家不吝赐教)

<span style"font-size:18px;">最近看了一道英雄会在线编程题目&#xff0c;题目的介绍如下&#xff1a;</span> <span style"font-size:18px;"></span> <span style"font-size:18px;">题目详情&#xff1a;</…

P2304 [NOI2015] 小园丁与老司机(网络流/上下界网络流)

P2304 [NOI2015] 小园丁与老司机 平面上有n个点&#xff0c;每次可以向左、右、上、左上45度、右上45度移动&#xff0c;然后直线移动到达第一个没有到过的点&#xff0c;如果没有这样的点就不能移动&#xff0c;求解一条最长路&#xff0c;然后求解将所有可能不是左右移动的道…

ASP.NET Core on K8S深入学习(7)Dashboard知多少

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。在第二篇《部署过程解析与Dashboard》中介绍了如何部署Dashboard&#xff0c;但是没有更多地介绍如何使用Dashboard&#xff0c;本文就来对Dashboard的使用进行补充。…

Convex Hull (ACM-ICPC 2018 沈阳赛区网络预赛) 存个公式

Convex Hull gay(i){0ifikxx,x>k,k>1iielse}求∑i1n∑j1igay(j)∑i1n(n−i1)gay(i)∑i1n(n−i1)μ2(i)i2因为μ2(n)∑i2∣nμ(i)&#xff0c;容斥定理显然得到有原式∑i1n(n−i1)i2∑j2∣iμ(j)(n1)∑i1n∑j2∣iμ(j)−∑i1ni3∑j2∣iμ(j)(n1)∑j1nμ(j)∑j2∣ii2−∑j1…

程序员的自我修养

一、技术类——互联网天际的摘星者 Unix环境高级编程&#xff08;第3版&#xff09; 编程珠玑 Python核心编程&#xff08;第二版&#xff09; 算法谜题 JavaScript框架设计 鸟哥的Linux私房菜 基础学习篇(第三版) 游戏机制——高级游戏设计技术 第一本Docker书 Swift …

多项式对数函数|指数函数(多项式)

多项式对数函数|指数函数 这个思路就是先求导然后再积分&#xff0c;这样就可以得到一个式子&#xff0c;对于多项式对数函数&#xff0c;我们就可以直接求解了&#xff0c;然后对于多项式指数函数还需要使用分治fft。 多项式对数&#xff1a; #include<bits/stdc.h> …

P5221 Product(反演)

P5221 Product 推式子 ∏i1n∏j1nlcm(i,j)gcd(i,j)∏i1n∏j1nijgcd(i,j)2我们考虑上面∏i1n∏j1nij∏i1nin∏j1nj∏i1ninn!n!n∏i1nin最后得到n!2n再考虑下面化简∏i1n∏j1ngcd(i,j)2∏d1nd2∑i1nd∑j1nd[gcd(i,j)1]对∑i1nd∑j1nd[gcd(i,j)1]化简∑k1ndμ(k)(nkd)2整体化简后…

【学习笔记】Docker - 02. 在容器中运行软件(上)

2.1 控制容器: 构建一个网站监视器 需求: 客户想让你做一个网站, 这个网站需要被紧密的监视, 如果服务器宕机了, 那么它们的团队会收到相关的邮件. 这里用到了3个容器. 第一个运行NGINX; 第二个运行一个叫做mailer的程序. 这两个容器都是detached的. Detached 表示容器将在后台…

P4249 [WC2007]剪刀石头布(网络流/费用流)

P4249 [WC2007]剪刀石头布 在一个竞赛图上一些边的方向已经确定&#xff0c;但是还有一些边的方向没有确定&#xff0c;求解最多有多少三元环。 首先看到三元环个数&#xff0c;按照套路我们利用度数计算&#xff0c;然后考虑每一条边&#xff0c;每一条边的贡献就是使两个点…

算法学习之旅

问题&#xff1a;设计一个算法&#xff0c;计算出n阶乘中尾部零的个数 例如: 11! 39916800&#xff0c;因此应该返回 2 挑战&#xff1a;O(logN)的时间复杂度 想法1&#xff1a; 找出1–n中每个数字能够被5或者10整除的次数&#xff0c;加在一起就是答案。但是时间复杂度是…

P6810 「MCOI-02」Convex Hull 凸包

P6810 「MCOI-02」Convex Hull 凸包 思路 ∑i1n∑j1mτ(i)τ(j)τ(gcd(i,j))∑d1nτ(d)∑i1nd∑j1mdτ(id)τ(id)[gcd(i,j)1]∑d1nτ(d)∑k1ndμ(k)∑i1ndk∑j1mdkτ(idk)τ(idk)tkd∑t1n∑i1ntτ(it)∑j1mtτ(jt)∑d∣tτ(d)μ(td)∑d∣tτ(d)μ(td)τ∗μ,有τ(n)∑d∣n∑d∣…

P6295 有标号 DAG 计数(多项式指数函数对数函数/二项式反演/动态规划/生成函数)

P6295 有标号 DAG 计数 https://www.luogu.com.cn/problem/P6295 求解n个点的有标号弱联通DAG个数 首先根据exp的组合意义&#xff0c;我们考虑指数型生成函数&#xff0c;那么我们先求出不要求弱联通的个数&#xff0c;然后ln回去就是弱联通的DAG个数。 然后考虑进行dp&…

使用.Net Core CLI命令dotnet new创建自定义模板

文章起源来自一篇博客&#xff1a;使用 .NET CORE 创建 项目模板&#xff0c;模板项目&#xff0c;Template - DeepThought - 博客园之前使用Abp的时候就很认同Abp创建模板项目的方式。想不到.Net Core出了更赞的方式创建模板。之前写过一个系列文章&#xff0c;有不少对Abp框架…