我们通常使用 缓存 + 过期时间的策略来帮助我们加速接口的访问速度,减少了后端负载,同时保证功能的更新。
1、缓存穿透
缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力。
(查询一个必然不存在的数据。比如文章表,查询一个不存在的id,每次都会访问DB,如果有人恶意破坏,很可能直接对DB造成影响。)
由于缓存不命中,每次都要查询持久层。从而失去缓存的意义。
1.1 使用互斥锁排队
业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。
public String getWithLock(String key, Jedis jedis, String lockKey,String uniqueId, long expireTime) {// 通过key获取valueString value = redisService.get(key);if (StringUtil.isEmpty(value)) {// 分布式锁,详细可以参考https://blog.csdn.net/fanrenxiang/article/details/79803037// 封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持try {boolean locked = redisService.tryDistributedLock(jedis,lockKey, uniqueId, expireTime);if (locked) {value = userService.getById(key);redisService.set(key, value);redisService.del(lockKey);return value;} else {// 其它线程进来了没获取到锁便等待50ms后重试Thread.sleep(50);getWithLock(key, jedis, lockKey, uniqueId, expireTime);}} catch (Exception e) {log.error("getWithLock exception=" + e);return value;} finally {redisService.releaseDistributedLock(jedis, lockKey, uniqueId);}}return value;}
这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。
1.2 布隆过滤器
bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:
<dependencies> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>23.0</version> </dependency>
</dependencies> public class BloomFilterTest {private static final int capacity = 1000000;private static final int key = 999998;private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity);static {for (int i = 0; i < capacity; i++) {bloomFilter.put(i);}}public static void main(String[] args) {/* 返回计算机最精确的时间,单位微妙 */long start = System.nanoTime();if (bloomFilter.mightContain(key)) {System.out.println("成功过滤到" + key);}long end = System.nanoTime();System.out.println("布隆过滤器消耗时间:" + (end - start));int sum = 0;for (int i = capacity + 20000; i < capacity + 30000; i++) {if (bloomFilter.mightContain(i)) {sum = sum + 1;}}System.out.println("错判率为:" + sum);}}成功过滤到999998
布隆过滤器消耗时间:215518
错判率为:318
复
可以看到,100w个数据中只消耗了约0.2毫秒就匹配到了key,速度足够快。然后模拟了1w个不存在于布隆过滤器中的key,匹配错误率为318/10000,也就是说,出错率大概为3%,跟踪下BloomFilter的源码发现默认的容错率就是0.03
2、缓存雪崩问题
缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。
解决方案:
- 在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
- 可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存
- 不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀
- 做二级缓存,或者双缓存策略。A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。
public String getByKey(String keyA, String keyB) {String value = redisService.get(keyA);if (StringUtil.isEmpty(value)) {value = redisService.get(keyB);String newValue = getFromDbById();redisService.set(keyA, newValue, 31, TimeUnit.DAYS);redisService.set(keyB, newValue);}return value;}
3、热点key
(1) 这个key是一个热点key(例如一个重要的新闻,一个热门的八卦新闻等等),所以这种key访问量可能非常大。
(2) 缓存的构建是需要一定时间的。(可能是一个复杂计算,例如复杂的sql、多次IO、多个依赖(各种接口)等等)
于是就会出现一个致命问题:在缓存失效的瞬间,有大量线程来构建缓存(见下图),造成后端负载加大,甚至可能会让系统崩溃 。
解决方法:
-
使用互斥锁(mutex key):这种解决方案思路比较简单,就是只让一个线程构建缓存,其他线程等待构建缓存的线程执行完,重新从缓存获取数据就可以了
-
"提前"使用互斥锁(mutex key):在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。
-
“永远不过期”:
这里的“永远不过期”包含两层意思:
(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期
- 资源保护:可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。
4、缓存和数据库间数据一致性问题
分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括 合适的缓存更新策略,更新数据库后要及时更新缓存、缓存失败时增加重试机制,例如MQ模式的消息队列。
5、拓展
http://www.mobabel.net/总结redis热点key发现及常见解决方案/