在.NET Core中使用MachineKey
在上篇文章中,我介绍了 Cookie
是基于 MachineKey
生成的, MachineKey
决定了 Cookie
生成的算法和密钥,并如果使用多台服务器做负载均衡时,必须指定一致的 MachineKey
。
但在 .NETCore
中,官方似乎并没有提供 MachineKey
实现,这为兼容 .NETFramework
的 Cookie
造成了许多障碍。
今天我将深入探索 MachineKey
这个类,看看里面到底藏了什么东西,本文的最后我将使用 .NETCore
来解密一个 ASP.NET MVC
生成的 Cookie
。
认识MachineKey
在 .NETFramework
中, machineKey
首先需要一个配置,写在 app.config
或者 web.config
中,格式一般如下:
<machineKey validationKey="128个hex字符" decryptionKey="64个hex字符" validation="SHA1" decryption="AES" />
网上能找到可以直接生成随机
MachineKey
的网站:https://www.developerfusion.com/tools/generatemachinekey/但
MachineKey
的validationKey
和decryptionKey
的内容只要符合长度和hex
要求,都是可以随意指定的,所以machineKey
生成器的意义其实不大。
探索MachineKey
打开 MachineKey
的源代码如下所示(有删减):
public static class MachineKey {public static byte[] Unprotect(byte[] protectedData, params string[] purposes) {// ...有删减return Unprotect(AspNetCryptoServiceProvider.Instance, protectedData, purposes);}// Internal method for unit testing.internal static byte[] Unprotect(ICryptoServiceProvider cryptoServiceProvider, byte[] protectedData, string[] purposes) {// If the user is calling this method, we want to use the ICryptoServiceProvider// regardless of whether or not it's the default provider.Purpose derivedPurpose = Purpose.User_MachineKey_Protect.AppendSpecificPurposes(purposes);ICryptoService cryptoService = cryptoServiceProvider.GetCryptoService(derivedPurpose);return cryptoService.Unprotect(protectedData);}
}
具体代码可参见:https://referencesource.microsoft.com/#system.web/Security/MachineKey.cs,209
可见它本质是使用了 AspNetCryptoServiceProvider.Instance
,然后调用其 GetCryptoService
方法,然后获取一个 cryptoService
,最后调用 Unprotect
,注意其中还使用了一个 Purpose
的类,依赖非常多。
AspNetCryptoServiceProvider
其中 AspNetCryptoServiceProvider.Instance
的定义如下(有删减和整合):
internal sealed class AspNetCryptoServiceProvider : ICryptoServiceProvider {private static readonly Lazy<AspNetCryptoServiceProvider> _singleton = new Lazy<AspNetCryptoServiceProvider>(GetSingletonCryptoServiceProvider);internal static AspNetCryptoServiceProvider Instance {get {return _singleton.Value;}}private static AspNetCryptoServiceProvider GetSingletonCryptoServiceProvider() {// Provides all of the necessary dependencies for an application-level// AspNetCryptoServiceProvider.MachineKeySection machineKeySection = MachineKeySection.GetApplicationConfig();return new AspNetCryptoServiceProvider(machineKeySection: machineKeySection,cryptoAlgorithmFactory: new MachineKeyCryptoAlgorithmFactory(machineKeySection),masterKeyProvider: new MachineKeyMasterKeyProvider(machineKeySection),dataProtectorFactory: new MachineKeyDataProtectorFactory(machineKeySection),keyDerivationFunction: SP800_108.DeriveKey);}
}
具体代码可见:https://referencesource.microsoft.com/#system.web/Security/Cryptography/AspNetCryptoServiceProvider.cs,68dbd1c184ea4e88
可见它本质是依赖于 AspNetCryptoServiceProvider
,它使用了 MachineKeyCryptoAlgorithmFactory
、 MachineKeyMasterKeyProvider
、 MachineKeyDataProtectorFactory
,以及一个看上去有点奇怪的 SP800_108.DeriveKey
。
AspNetCryptoServiceProvider
的 GetCryptoService
方法如下:
public ICryptoService GetCryptoService(Purpose purpose, CryptoServiceOptions options = CryptoServiceOptions.None) {ICryptoService cryptoService;if (_isDataProtectorEnabled && options == CryptoServiceOptions.None) {// We can only use DataProtector if it's configured and the caller didn't ask for any special behavior like cacheabilitycryptoService = GetDataProtectorCryptoService(purpose);}else {// Otherwise we fall back to using the <machineKey> algorithms for cryptographycryptoService = GetNetFXCryptoService(purpose, options);}// always homogenize errors returned from the crypto servicereturn new HomogenizingCryptoServiceWrapper(cryptoService);
}
private NetFXCryptoService GetNetFXCryptoService(Purpose purpose, CryptoServiceOptions options) {// Extract the encryption and validation keys from the provided Purpose objectCryptographicKey encryptionKey = purpose.GetDerivedEncryptionKey(_masterKeyProvider, _keyDerivationFunction);CryptographicKey validationKey = purpose.GetDerivedValidationKey(_masterKeyProvider, _keyDerivationFunction);// and return the ICryptoService// (predictable IV turned on if the caller requested cacheable output)return new NetFXCryptoService(_cryptoAlgorithmFactory, encryptionKey, validationKey, predictableIV: (options == CryptoServiceOptions.CacheableOutput));
}
注意其中有一个判断,我结合 dnSpy
做了认真的调试,发现它默认走的是 GetNetFXCryptoService
,也就是注释中所谓的 <machineKey>
算法。
然后 GetNetFXCryptoService
方法依赖于 _masterKeyProvider
和 _keyDerivationFunction
用来生成两个 CryptographicKey
,这两个就是之前所说的 MachineKeyMasterKeyProvider
和 MachineKeyDataProtectorFactory
。
注意其中还有一个 HomogenizingCryptoServiceWrapper
类,故名思义,它的作用应该是统一管理加密解释过程中的报错,实际也确实如此,我不作深入,有兴趣的读者可以看看原始代码在这:https://referencesource.microsoft.com/#system.web/Security/Cryptography/HomogenizingCryptoServiceWrapper.cs,25
最后调用 NetFXCryptoService
来执行 Unprotect
任务。
NetFXCryptoService
这个是重点了,源代码如下(有删减):
internal sealed class NetFXCryptoService : ICryptoService {private readonly ICryptoAlgorithmFactory _cryptoAlgorithmFactory;private readonly CryptographicKey _encryptionKey;private readonly bool _predictableIV;private readonly CryptographicKey _validationKey;// ...有删减// [UNPROTECT]// INPUT: protectedData// OUTPUT: clearData// ALGORITHM:// 1) Assume protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))// 2) Validate the signature over the payload and strip it from the end// 3) Strip off the IV from the beginning of the payload// 4) Decrypt what remains of the payload, and return it as clearDatapublic byte[] Unprotect(byte[] protectedData) {// ...有删减using (SymmetricAlgorithm decryptionAlgorithm = _cryptoAlgorithmFactory.GetEncryptionAlgorithm()) {// 省略约100行代码????}}
}
这个代码非常长,我直接一刀全部删减了,只保留注释。如果不理解先好好看注释,不理解它在干嘛,直接看代码可能非常难,有兴趣的可以直接先看看代码:https://referencesource.microsoft.com/#system.web/Security/Cryptography/NetFXCryptoService.cs,35
首先看注释:
protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))
加密之后的数据由 IV
、 密文
以及 签名
三部分组成;
其中 密文
使用 encryptionKey
、 IV
和 原始明文
加密而来;
签名
由 validationKey
作验证,传入参数是 IV
以及 密文
(这一点有点像 jwt
)。
现在再来看看代码:
int ivByteCount = decryptionAlgorithm.BlockSize / 8; // IV length is equal to the block size
int signatureByteCount = validationAlgorithm.HashSize / 8;
IV
的长度由解密算法的 BlockSize
决定,签名算法的长度由验证算法的 BlockSize
决定,有了 IV
和 签名
的长度,就知道了密文的长度:
int encryptedPayloadByteCount = protectedData.Length - ivByteCount - signatureByteCount;
下文就应该是轻车熟路,依葫芦画瓢了,先验证签名:
byte[] computedSignature = validationAlgorithm.ComputeHash(protectedData, 0, ivByteCount + encryptedPayloadByteCount);
if (/*验证不成功*/) {return null;
}
然后直接解密:
using (MemoryStream memStream = new MemoryStream()) {using (ICryptoTransform decryptor = decryptionAlgorithm.CreateDecryptor()) {using (CryptoStream cryptoStream = new CryptoStream(memStream, decryptor, CryptoStreamMode.Write)) {cryptoStream.Write(protectedData, ivByteCount, encryptedPayloadByteCount);cryptoStream.FlushFinalBlock();// At this point// memStream := clearDatabyte[] clearData = memStream.ToArray();return clearData;}}
}
可见这个类都是一些“正常操作”。之后我们来补充一下遗漏的部分。
MachineKeyCryptoAlgorithmFactory
首先是 MachineKeyCryptoAlgorithmFactory
,代码如下(只保留了重点):
switch (algorithmName) {case "AES":case "Auto": // currently "Auto" defaults to AESreturn CryptoAlgorithms.CreateAes;case "DES":return CryptoAlgorithms.CreateDES;case "3DES":return CryptoAlgorithms.CreateTripleDES;default:return null; // unknown
}
switch (algorithmName) {case "SHA1":return CryptoAlgorithms.CreateHMACSHA1;case "HMACSHA256":return CryptoAlgorithms.CreateHMACSHA256;case "HMACSHA384":return CryptoAlgorithms.CreateHMACSHA384;case "HMACSHA512":return CryptoAlgorithms.CreateHMACSHA512;default:return null; // unknown
}
源代码链接在这:https://referencesource.microsoft.com/#system.web/Security/Cryptography/MachineKeyCryptoAlgorithmFactory.cs,14
可见非常地直白、浅显易懂。
MachineKeyMasterKeyProvider
然后是 MachineKeyMasterKeyProvider
,核心代码如下:
private CryptographicKey GenerateCryptographicKey(string configAttributeName, string configAttributeValue, int autogenKeyOffset, int autogenKeyCount, string errorResourceString) {byte[] keyMaterial = CryptoUtil.HexToBinary(configAttributeValue);// If <machineKey> contained a valid key, just use it verbatim.if (keyMaterial != null && keyMaterial.Length > 0) {return new CryptographicKey(keyMaterial);}// 有删减
}public CryptographicKey GetEncryptionKey() {if (_encryptionKey == null) {_encryptionKey = GenerateCryptographicKey(configAttributeName: "decryptionKey",configAttributeValue: _machineKeySection.DecryptionKey,autogenKeyOffset: AUTOGEN_ENCRYPTION_OFFSET,autogenKeyCount: AUTOGEN_ENCRYPTION_KEYLENGTH,errorResourceString: SR.Invalid_decryption_key);}return _encryptionKey;
}
public CryptographicKey GetValidationKey() {if (_validationKey == null) {_validationKey = GenerateCryptographicKey(configAttributeName: "validationKey",configAttributeValue: _machineKeySection.ValidationKey,autogenKeyOffset: AUTOGEN_VALIDATION_OFFSET,autogenKeyCount: AUTOGEN_VALIDATION_KEYLENGTH,errorResourceString: SR.Invalid_validation_key);}return _validationKey;
}
可见这个类就是从 app.config
/ web.config
中读取两个 xml
位置的值,并转换为 CryptographicKey
,然后 CryptographicKey
的本质就是一个字节数组 byte[]
。
注意,原版的
GenerateCrytographicKey
函数其实很长,但重点确实就是前面这三行代码,后面的是一些骚操作,可以自动从一些配置的位置生成machineKey
,这应该和machineKey
节点缺失或者不写有关,不在本文考虑的范畴以内。有兴趣的读者可以参见原始代码:https://referencesource.microsoft.com/#system.web/Security/Cryptography/MachineKeyMasterKeyProvider.cs,87
MachineKeyDataProtectorFactory
其源代码如下(有删减):
internal sealed class MachineKeyDataProtectorFactory : IDataProtectorFactory {public DataProtector GetDataProtector(Purpose purpose) {if (_dataProtectorFactory == null) {_dataProtectorFactory = GetDataProtectorFactory();}return _dataProtectorFactory(purpose);}private Func<Purpose, DataProtector> GetDataProtectorFactory() {string applicationName = _machineKeySection.ApplicationName;string dataProtectorTypeName = _machineKeySection.DataProtectorType;Func<Purpose, DataProtector> factory = purpose => {// Since the custom implementation might depend on the impersonated// identity, we must instantiate it under app-level impersonation.using (new ApplicationImpersonationContext()) {return DataProtector.Create(dataProtectorTypeName, applicationName, purpose.PrimaryPurpose, purpose.SpecificPurposes);}};// 删减验证factory的部分代码和try-catchreturn factory; // we know at this point the factory is good}
}
其原始代码如下:https://referencesource.microsoft.com/#System.Web/Security/Cryptography/MachineKeyDataProtectorFactory.cs,cc110253450fcb16
注意 _machineKeySection
的 ApplicationName
和 DataProtectorType
默认都是空字符串 ""
,具体不细说,在这定义的:https://referencesource.microsoft.com/#System.Web/Configuration/MachineKeySection.cs,50
所以我们继续看 DataProtector
的代码:
public abstract class DataProtector
{public static DataProtector Create(string providerClass,string applicationName,string primaryPurpose,params string[] specificPurposes){// Make sure providerClass is not null - Other parameters checked in constructorif (null == providerClass)throw new ArgumentNullException("providerClass");// Create a DataProtector based on this type using CryptoConfigreturn (DataProtector)CryptoConfig.CreateFromName(providerClass, applicationName, primaryPurpose, specificPurposes);}
}
注意它唯一的引用 CryptoConfig
,已经属于 .NETCore
已经包含的范畴了,因此没必要继续深入追踪。
Purpose
注意一开始时,我们说到的 Purpose
,相关定义如下:
public class Purpose {// ...有删减public static readonly Purpose User_MachineKey_Protect = new Purpose("User.MachineKey.Protect");internal Purpose AppendSpecificPurposes(IList<string> specificPurposes){if (specificPurposes == null || specificPurposes.Count == 0){return this;}string[] array = new string[SpecificPurposes.Length + specificPurposes.Count];Array.Copy(SpecificPurposes, array, SpecificPurposes.Length);specificPurposes.CopyTo(array, SpecificPurposes.Length);return new Purpose(PrimaryPurpose, array);}// Returns a label and context suitable for passing into the SP800-108 KDF.internal void GetKeyDerivationParameters(out byte[] label, out byte[] context) {// The primary purpose can just be used as the label directly, since ASP.NET// is always in full control of the primary purpose (it's never user-specified).if (_derivedKeyLabel == null) {_derivedKeyLabel = CryptoUtil.SecureUTF8Encoding.GetBytes(PrimaryPurpose);}// The specific purposes (which can contain nonce, identity, etc.) are concatenated// together to form the context. The BinaryWriter class prepends each element with// a 7-bit encoded length to guarantee uniqueness.if (_derivedKeyContext == null) {using (MemoryStream stream = new MemoryStream())using (BinaryWriter writer = new BinaryWriter(stream, CryptoUtil.SecureUTF8Encoding)) {foreach (string specificPurpose in SpecificPurposes) {writer.Write(specificPurpose);}_derivedKeyContext = stream.ToArray();}}label = _derivedKeyLabel;context = _derivedKeyContext;}
}
注意其 PrimaryPurpose
值为: "User.MachineKey.Protect"
。
另外还需要记住这个 GetKeyDerivationParameters
方法,它将在接下来的 SP800_108
类中使用,它将 PrimaryPurpose
经过 utf8
编码生成 label
参数,然后用所有的 SpecificPurposes
通过二进制序列化,生成 context
参数。
原始代码链接:https://referencesource.microsoft.com/#System.Web/Security/Cryptography/Purpose.cs,6fd5fbe04ec71877
SP800_108
已经接近尾声了,我们知道一个字符串要转换为密钥,就必须经过一个安全的哈希算法。之前我们接触得最多的,是 Rfc2898DeriveBytes
,但它是为了保存密码而设计的。这里不需要这么复杂,因此…… .NET
另写了一个。
这个类代码非常长,但好在它所有内容都兼容 .NETCore
,因此可以直接复制粘贴。
它的目的是通过 Purpose
来生成密钥。有兴趣的读者可以了解一下其算法:https://referencesource.microsoft.com/#System.Web/Security/Cryptography/SP800_108.cs,38
收尾
关系图整理
我已经尽力将代码重点划出来,但仍然很复杂。这么多类,我最后理了一个关系图,用于了解其调用、依赖链:
MachineKeyPurposeAspNetCryptoServiceProviderMachineKeySectionMachineKeyCryptoAlgorithmFactoryCryptoAlgorithmsMachineKeyMasterKeyProviderCryptographicKeyMachineKeyDataProtectorFactoryDataProtectorCryptoConfigSP800_108
祖传代码
整理了这么久,没有点干货怎么能行?基于以上的整理,我写了一份“祖传代码”,可以直接拿来在 .NETCore
中使用。代码较长,约 200
行,已经上传到我的博客数据网站,各位可以自取:https://github.com/sdcb/blog-data/tree/master/2020/20200222-machinekey-in-dotnetcore
其实只要一行代码?
直到后来,我发现有人将这些功能封闭成了一个 NuGet
包: AspNetTicketBridge
,只需“一行”代码,就能搞定所有这些功能:
// https://github.com/dmarlow/AspNetTicketBridge
string cookie = "你的Cookie内容";
string validationKey = "machineKey中的validationKey";
string decryptionKey = "machineKey中的decryptionKey";
OwinAuthenticationTicket ticket = MachineKeyTicketUnprotector.UnprotectCookie(cookie, decryptionKey, validationKey);
用 LINQPad
运行,结果如下(完美破解):
总结
喜欢的朋友请关注我的微信公众号:【DotNet骚操作】