万字总结 JS 数据结构与常用的算法

前言

首先,为什么我会学习数据结构与算法呢,其实主要是有两方面

  • 第一,是我在今年的flag里明确说到我会学这个东西
  • 第二,学了这些,对自己以后在工作或者面试也会带来许多好处

然后,本文是最近学习的一个总结文章,文中有不足的地方也希望大家在评论区进行指正;
文中的算法题,大部分都是leetcode中的,如不太理解题意,可直接去leetcode中找到对应的题。

基本概念

常常听到算法的时候,就会有人说到 时间复杂度, 空间复杂度。 那么这俩玩意是啥呢,下面我就来一一解释

时间复杂度

其实就是一个函数,用大 O 表示, 比如 O(1)、 O(n)…
它的作用就是用来定义描述算法的运行时间

O(1)

  let i = 0i += 1

O(n)

如果是 O(1) + O(n) 则还是 O(n)

 for (let i = 0; i < n; i += 1) {console.log(i)}

O(n^2)

O(n) * O(n), 也就是双层循环,自此类推: O(n^3)…

    for (let i = 0; i < n; i += 1) {for (let j = 0; j < n; j += 1) {console.log(i, j)}}

O(logn)

就是求 log 以 2 为底的多少次方等于 n

// 这个例子就是求2的多少次方会大于i,然后就会结束循环。 这就是一个典型的 O(logn)let i = 1while (i < n) {console.log(i)i *= 2}

空间复杂度

和时间复杂度一样,空间复杂度也是用大 O 表示,比如 O(1)、 O(n)…
它用来定义描述算法运行过程中临时占用的存储空间大小

占用越少 代码写的就越好

O(1)

单个变量,所以占用永远是 O(1)

let i = 0i += 1

O(n)

声明一个数组, 添加 n 个值, 相当于占用了 n 个空间单元

  const arr = []for (let i = 0; i < n; i += 1) {arr.push(i)}

O(n^2)

类似一个矩阵的概念,就是二维数组的意思

    const arr = []for (let i = 0; i < n; i += 1) {arr.push([])for (let j = 0; j < n; j += 1) {arr[i].push(j)}}

数据结构

一个先进后出的数据结构
按照常识理解就是有序的挤公交,最后上车的人会在门口,然后门口的人会最先下车
在这里插入图片描述

js中没有栈的数据类型,但我们可以通过Array来模拟一个

const stack = [];stack.push(1); // 入栈
stack.push(2); // 入栈const item1 = stack.pop();  //出栈的元素

十进制转二进制

// 时间复杂度 O(n) n为二进制的长度
// 空间复杂度 O(n) n为二进制的长度
const dec2bin = (dec) => {// 创建一个字符串let res = "";// 创建一个栈let stack = []// 遍历数字 如果大于0 就可以继续转换2进制while (dec > 0) {// 将数字的余数入栈stack.push(dec % 2);// 除以2dec = dec >> 1;}// 取出栈中的数字while (stack.length) {res += stack.pop();}// 返回这个字符串return res;
};

判断字符串的有效括号

// 时间复杂度O(n) n为s的length
// 空间复杂度O(n)
const isValid = (s) => {// 如果长度不等于2的倍数肯定不是一个有效的括号if (s.length % 2 === 1) return false;// 创建一个栈let stack = [];// 遍历字符串for (let i = 0; i < s.length; i++) {const c = s[i];// 如果是左括号就入栈if (c === '(' || c === "{" || c === "[") {stack.push(c);} else {// 如果不是左括号 且栈为空 肯定不是一个有效的括号 返回falseif (!stack.length) return false// 拿到最后一个左括号const top = stack[stack.length - 1];// 如果是右括号和左括号能匹配就出栈if ((top === "(" && c === ")") || (top === "{" && c === "}") || (top === "[" && c === "]")) {stack.pop();} else {// 否则就不是一个有效的括号return false}}}return stack.length === 0;
};

队列

和栈相反,是先进先出的一种数据结构
按照常识理解就是银行排号办理业务, 先去领号排队的人, 先办理业务
在这里插入图片描述

同样 js中没有队列的数据类型,但我们可以通过 Array来模拟一个

const queue = [];// 入队
queue.push(1);
queue.push(2);// 出队
const first = queue.shift();
const end = queue.shift();

最近的请求次数

var RecentCounter = function () {// 初始化队列this.q = [];
};// 输入 inputs = [[],[1],[100],[3001],[3002]] 请求间隔为 3000ms
// 输出 outputs = [null,1,2,3,3]   // 时间复杂度 O(n) n为剔出老请求的长度
// 空间复杂度 O(n) n为最近请求的次数
RecentCounter.prototype.ping = function (t) {// 如果传入的时间小于等于最近请求的时间,则直接返回0if (!t) return null// 将传入的时间放入队列this.q.push(t);// 如果队头小于 t - 3000 则剔除队头while (this.q[0] < t - 3000) {this.q.shift();}// 返回最近请求的次数return this.q.length;
};

链表

多个元素组成的列表,元素存储不连续,通过 next 指针来链接, 最底层为 null
就类似于 父辈链接关系 吧, 比如: 你爷爷的儿子是你爸爸,你爸爸的儿子是你,而你假如目前还没有结婚生子,那你就暂时木有儿子

在这里插入图片描述

js中类似于链表的典型就是原型链, 但是js中没有链表这种数据结构,我们可以通过一个object来模拟链表

const a = {val: "a"
}const b = {val: "b"
}const c = {val: "c"
}const d = {val: "d"
}a.next = b;
b.next = c;
c.next = d;// const linkList = {
//    val: "a",
//    next: {
//        val: "b",
//        next: {
//            val: "c",
//            next: {
//                val: "d",
//                next: null
//            }
//        }
//    }
// }// 遍历链表
let p = a;
while (p) {console.log(p.val);p = p.next;
}// 插入
const e = { val: 'e' };
c.next = e;
e.next = d;// 删除
c.next = d;

手写instanceOf

const myInstanceOf = (A, B) => {// 声明一个指针let p = A;// 遍历这个链表while (p) {if (p === B.prototype) return true;p = p.__proto__;}return false
}myInstanceOf([], Object)

删除链表中的节点

// 时间复杂和空间复杂度都是 O(1)
const deleteNode = (node) => {// 把当前链表的指针指向下下个链表的值就可以了node.val = node.next.val;node.next = node.next.next
}

删除排序链表中的重复元素

// 1 -> 1 -> 2 -> 3 -> 3 
// 1 -> 2 -> 3 -> null// 时间复杂度 O(n) n为链表的长度
// 空间复杂度 O(1)
const deleteDuplicates = (head) => {// 创建一个指针let p = head;// 遍历链表while (p && p.next) {// 如果当前节点的值等于下一个节点的值if (p.val === p.next.val) {// 删除下一个节点p.next = p.next.next} else {// 否则继续遍历p = p.next}}//  最后返回原来链表return head
}

反转链表

// 1 -> 2 -> 3 -> 4 -> 5 -> null
// 5 -> 4 -> 3 -> 2 -> 1 -> null// 时间复杂度 O(n) n为链表的长度
// 空间复杂度 O(1)
var reverseList = function (head) {// 创建一个指针let p1 = head;// 创建一个新指针let p2 = null;// 遍历链表while (p1) {// 创建一个临时变量const tmp = p1.next;// 将当前节点的下一个节点指向新链表p1.next = p2;// 将新链表指向当前节点p2 = p1;// 将当前节点指向临时变量p1 = tmp;}// 最后返回新的这个链表return p2;
}reverseList(list

集合

一种无序且唯一的数据结构

ES6中有集合 Set类型


const arr = [1, 1, 1, 2, 2, 3];// 去重
const arr2 = [...new Set(arr)];// 判断元素是否在集合中
const set = new Set(arr);
set.has(2) // true//  交集
const set2 = new Set([1, 2]);
const set3 = new Set([...set].filter(item => set.has(item)));

两个数组的交集

// 时间复杂度 O(n^2) n为数组长度
// 空间复杂度 O(n)  n为去重后的数组长度
const intersection = (nums1, nums2) => {// 通过数组的filter选出交集// 然后通过 Set集合 去重 并生成数组return [...new Set(nums1.filter(item => nums2.includes(item)))];
}

字典

与集合类似,一个存储唯一值的结构,以键值对的形式存储

js中有字典数据结构 就是 Map 类型

两数之和

// nums = [2, 7, 11, 15] target = 9// 时间复杂度O(n) n为nums的length
// 空间复杂度O(n)
var twoSum = function (nums, target) {// 建立一个字典数据结构来保存需要的值const map = new Map();for (let i = 0; i < nums.length; i++) {// 获取当前的值,和需要的值const n = nums[i];const n2 = target - n;// 如字典中有需要的值,就匹配成功if (map.has(n2)) {return [map.get(n2), i];} else {// 如没有,则把需要的值添加到字典中map.set(n, i);}}
};

两个数组的交集

// nums1 = [1,2,2,1], nums2 = [2,2]
// 输出:[2]// 时间复杂度 O(m + n) m为nums1长度 n为nums2长度
// 空间复杂度 O(m) m为交集的数组长度
const intersection = (nums1, nums2) => {// 创建一个字典const map = new Map();// 将数组1中的数字放入字典nums1.forEach(n => map.set(n, true));// 创建一个新数组const res = [];// 将数组2遍历 并判断是否在字典中nums2.forEach(n => {if (map.has(n)) {res.push(n);// 如果在字典中,则删除该数字map.delete(n);}})return res;
};

字符的有效的括号

// 用字典优化// 时间复杂度 O(n) n为s的字符长度
// 空间复杂度 O(n) 
const isValid = (s) => {// 如果长度不等于2的倍数肯定不是一个有效的括号if (s.length % 2 !== 0) return false// 创建一个字典const map = new Map();map.set('(', ')');map.set('{', '}');map.set('[', ']');// 创建一个栈const stack = [];// 遍历字符串for (let i = 0; i < s.length; i++) {// 取出字符const c = s[i];// 如果是左括号就入栈if (map.has(c)) {stack.push(c)} else {// 取出栈顶const t = stack[stack.length - 1];// 如果字典中有这个值 就出栈if (map.get(t) === c) {stack.pop();} else {// 否则就不是一个有效的括号return false}}}return stack.length === 0;
};

最小覆盖字串

// 输入:s = "ADOBECODEBANC", t = "ABC"
// 输出:"BANC"// 时间复杂度 O(m + n) m是t的长度 n是s的长度
// 空间复杂度 O(k) k是字符串中不重复字符的个数
var minWindow = function (s, t) {// 定义双指针维护一个滑动窗口let l = 0;let r = 0;// 建立一个字典const need = new Map();//  遍历tfor (const c of t) {need.set(c, need.has(c) ? need.get(c) + 1 : 1)}let needType = need.size// 记录最小子串let res = ""// 移动右指针while (r < s.length) {// 获取当前字符const c = s[r];// 如果字典里有这个字符if (need.has(c)) {// 减少字典里面的次数need.set(c, need.get(c) - 1);// 减少需要的值if (need.get(c) === 0) needType -= 1;}// 如果字典中所有的值都为0了 就说明找到了一个最小子串while (needType === 0) {// 取出当前符合要求的子串const newRes = s.substring(l, r + 1)// 如果当前子串是小于上次的子串就进行覆盖if (!res || newRes.length < res.length) res = newRes;// 获取左指针的字符const c2 = s[l];// 如果字典里有这个字符if (need.has(c2)) {// 增加字典里面的次数need.set(c2, need.get(c2) + 1);// 增加需要的值if (need.get(c2) === 1) needType += 1;}l += 1;}r += 1;}return res
};

一种分层数据的抽象模型, 比如DOM树、树形控件等

js中没有树 但是可以用 Object 和 Array 构建树

普通树

// 这就是一个常见的普通树形结构
const tree = {val: "a",children: [{val: "b",children: [{val: "d",children: [],},{val: "e",children: [],}],},{val: "c",children: [{val: "f",children: [],},{val: "g",children: [],}],}],
}

深度优先遍历

  • 尽可能深的搜索树的分支,就比如遇到一个节点就会直接去遍历他的子节点,不会立刻去遍历他的兄弟节点
  • 口诀:访问根节点,对根节点的 children 挨个进行深度优先遍历


// 深度优先遍历
const dfs = (tree) => {tree.children.forEach(dfs)
};

广度优先遍历

  • 先访问离根节点最近的节点, 如果有兄弟节点就会先遍历兄弟节点,再去遍历自己的子节点
  • 口诀:
    1.新建一个队列 并把根节点入队;
    2.把队头出队并访问;
    3.把队头的children挨个入队;
    4.重复第二 、三步 直到队列为空

// 广度优先遍历
const bfs = (tree) => {const q = [tree];while (q.length > 0) {const n = q.shift()console.log(n.val);n.children.forEach(c => q.push(c))}
};

二叉树

树中每个节点 最多只能有两个子节点
在这里插入图片描述

 const bt = {val: 1,left: {val: 2,left: null,right: null},right: {val: 3,left: {val: 4,left: null,right: null},right: {val: 5,left: null,right: null}}
}

二叉树的先序遍历

  • 访问根节点
  • 对根节点的左子树进行先序遍历
  • 对根节点的右子树进行先序遍历

// 先序遍历 递归
const preOrder = (tree) => {if (!tree) returnconsole.log(tree.val);preOrder(tree.left);preOrder(tree.right);
}// 先序遍历 非递归
const preOrder2 = (tree) => {if (!tree) return// 新建一个栈const stack = [tree];while (stack.length > 0) {const n = stack.pop();console.log(n.val);// 负负为正if (n.right) stack.push(n.right);if (n.left) stack.push(n.left);}
}

二叉树的中序遍历

  • 对根节点的左子树进行中序遍历
  • 访问根节点
  • 对根节点的右子树进行中序遍历
    在这里插入图片描述

// 中序遍历 递归
const inOrder = (tree) => {if (!tree) return;inOrder(tree.left)console.log(tree.val);inOrder(tree.right)
}// 中序遍历 非递归
const inOrder2 = (tree) => {if (!tree) return;// 新建一个栈const stack = [];// 先遍历所有的左节点let p = tree;while (stack.length || p) {while (p) {stack.push(p)p = p.left}const n = stack.pop();console.log(n.val);p = n.right;}
}

二叉树的后序遍历

  • 对根节点的左子树进行后序遍历
  • 对根节点的右子树进行后序遍历
  • 访问根节点
    在这里插入图片描述

// 后序遍历 递归
const postOrder = (tree) => {if (!tree) returnpostOrder(tree.left)postOrder(tree.right)console.log(tree.val)
};// 后序遍历 非递归
const postOrder2 = (tree) => {if (!tree) returnconst stack = [tree];const outputStack = [];while (stack.length) {const n = stack.pop();outputStack.push(n)// 负负为正if (n.left) stack.push(n.left);if (n.right) stack.push(n.right);}while (outputStack.length) {const n = outputStack.pop();console.log(n.val);}
};

二叉树的最大深度

// 给一个二叉树,需要你找出其最大的深度,从根节点到叶子节点的距离// 时间复杂度 O(n) n为树的节点数
// 空间复杂度 有一个递归调用的栈 所以为 O(n) n也是为二叉树的最大深度
var maxDepth = function (root) {let res = 0;// 使用深度优先遍历const dfs = (n, l) => {if (!n) return;if (!n.left && !n.right) {// 没有叶子节点就把深度数量更新res = Math.max(res, l);}dfs(n.left, l + 1)dfs(n.right, l + 1)}dfs(root, 1)return res
}

二叉树的最小深度

// 给一个二叉树,需要你找出其最小的深度, 从根节点到叶子节点的距离// 时间复杂度O(n) n是树的节点数量
// 空间复杂度O(n) n是树的节点数量
var minDepth = function (root) {if (!root) return 0// 使用广度优先遍历const q = [[root, 1]];while (q.length) {// 取出当前节点const [n, l] = q.shift();// 如果是叶子节点直接返回深度就可if (!n.left && !n.right) return lif (n.left) q.push([n.left, l + 1]);if (n.right) q.push([n.right, l + 1]);}}

二叉树的层序遍历

在这里插入图片描述

// 需要返回 [[1], [2,3], [4,5]]// 时间复杂度 O(n) n为树的节点数
// 空间复杂度 O(n) 
var levelOrder = function (root) {if (!root) return []// 广度优先遍历const q = [root];const res = [];while (q.length) {let len = q.lengthres.push([])// 循环每层的节点数量次while (len--) {const n = q.shift();res[res.length - 1].push(n.val)if (n.left) q.push(n.left);if (n.right) q.push(n.right);}}return res
};

图是网络结构的抽象模型, 是一组由边连接的节点

js中可以利用Object和Array构建图

在这里插入图片描述

// 上图可以表示为
const graph = {0: [1, 2],1: [2],2: [0, 3],3: [3]
}// 深度优先遍历,对根节点没访问过的相邻节点挨个进行遍历
{// 记录节点是否访问过const visited = new Set();const dfs = (n) => {visited.add(n);// 遍历相邻节点graph[n].forEach(c => {// 没访问过才可以,进行递归访问if(!visited.has(c)){dfs(c)}});}// 从2开始进行遍历dfs(2)
}// 广度优先遍历 
{const visited = new Set();// 新建一个队列, 根节点入队, 设2为根节点const q = [2];visited.add(2)while (q.length) {// 队头出队,并访问const n = q.shift();console.log(n);graph[n].forEach(c => {// 对没访问过的相邻节点入队if (!visited.has(c)) {q.push(c)visited.add(c)}})}
}

有效数字


// 生成数字关系图 只有状态为 3 5 6 的时候才为一个数字
const graph = {0: { 'blank': 0, 'sign': 1, ".": 2, "digit": 6 },1: { "digit": 6, ".": 2 },2: { "digit": 3 },3: { "digit": 3, "e": 4 },4: { "digit": 5, "sign": 7 },5: { "digit": 5 },6: { "digit": 6, ".": 3, "e": 4 },7: { "digit": 5 },
}// 时间复杂度 O(n) n是字符串长度
// 空间复杂度 O(1) 
var isNumber = function (s) {// 记录状态let state = 0;// 遍历字符串for (c of s.trim()) {// 把字符进行转换if (c >= '0' && c <= '9') {c = 'digit';} else if (c === " ") {c = 'blank';} else if (c === "+" || c === "-") {c = "sign";} else if (c === "E" || c === "e") {c = "e";}// 开始寻找图state = graph[state][c];// 如果最后是undefined就是错误if (state === undefined) return false}// 判断最后的结果是不是合法的数字if (state === 3 || state === 5 || state === 6) return truereturn false
}; 

一种特殊的完全二叉树, 所有的节点都大于等于最大堆,或者小于等于最小堆的子节点

js通常使用数组来表示堆

  • 左侧子节点的位置是 2index + 1*
  • 右侧子节点的位置是 2index + 2*
  • 父节点的位置是 (index - 1) / 2 , 取余数
    在这里插入图片描述

JS实现一个最小堆


// js实现最小堆类
class MinHeap {constructor() {// 元素容器this.heap = [];}// 交换节点的值swap(i1, i2) {[this.heap[i1], this.heap[i2]] = [this.heap[i2], this.heap[i1]]}//  获取父节点getParentIndex(index) {// 除以二, 取余数return (index - 1) >> 1;}// 获取左侧节点索引getLeftIndex(i) {return (i << 1) + 1;}// 获取右侧节点索引getRightIndex(i) {return (i << 1) + 2;}// 上移shiftUp(index) {if (index == 0) return;// 获取父节点const parentIndex = this.getParentIndex(index);// 如果父节点的值大于当前节点的值 就需要进行交换if (this.heap[parentIndex] > this.heap[index]) {this.swap(parentIndex, index);// 然后继续上移this.shiftUp(parentIndex);}}// 下移shiftDown(index) {// 获取左右节点索引const leftIndex = this.getLeftIndex(index);const rightIndex = this.getRightIndex(index);// 如果左子节点小于当前的值if (this.heap[leftIndex] < this.heap[index]) {// 进行节点交换this.swap(leftIndex, index);// 继续进行下移this.shiftDown(leftIndex)}// 如果右侧节点小于当前的值if (this.heap[rightIndex] < this.heap[index]) {this.swap(rightIndex, index);this.shiftDown(rightIndex)}}// 插入元素insert(value) {// 插入到堆的底部this.heap.push(value);// 然后上移: 将这个值和它的父节点进行交换,知道父节点小于等于这个插入的值this.shiftUp(this.heap.length - 1)}// 删除堆项pop() {// 把数组最后一位 转移到数组头部this.heap[0] = this.heap.pop();// 进行下移操作this.shiftDown(0);}// 获取堆顶元素peek() {return this.heap[0]}// 获取堆大小size() {return this.heap.length}}

数组中的第k个最大元素

// 输入 [3,2,1,5,6,4] 和 k = 2
// 输出 5// 时间复杂度 O(n * logK) K就是堆的大小
// 空间复杂度 O(K) K是参数k
var findKthLargest = function (nums, k) {// 使用上面js实现的最小堆类,来构建一个最小堆const h = new MinHeap();// 遍历数组nums.forEach(n => {// 把数组中的值依次插入到堆里h.insert(n);if (h.size() > k) {// 进行优胜劣汰h.pop();}})return h.peek()
};

前 K 个高频元素

// nums = [1,1,1,2,2,3], k = 2
// 输出: [1,2]// 时间复杂度 O(n * logK) 
// 空间复杂度 O(k)
var topKFrequent = function (nums, k) {// 统计每个元素出现的频率const map = new Map();// 遍历数组 建立映射关系nums.forEach(n => {map.set(n, map.has(n) ? map.get(n) + 1 : 1);})// 建立最小堆const h = new MinHeap();// 遍历映射关系map.forEach((value, key) => {// 由于插入的元素结构发生了变化,所以需要对 最小堆的类 进行改造一下,改造的方法我会写到最后h.insert({ value, key })if (h.size() > k) {h.pop()}})return h.heap.map(item => item.key)
};// 改造上移和下移操作即可
// shiftUp(index) {
//   if (index == 0) return;
//   const parentIndex = this.getParentIndex(index);
//   if (this.heap[parentIndex] && this.heap[parentIndex].value > this.heap[index].value) {
//     this.swap(parentIndex, index);
//     this.shiftUp(parentIndex);
//   }
// }
// shiftDown(index) {
//   const leftIndex = this.getLeftIndex(index);
//   const rightIndex = this.getRightIndex(index);//   if (this.heap[leftIndex] && this.heap[leftIndex].value < this.heap[index].value) {
//     this.swap(leftIndex, index);
//     this.shiftDown(leftIndex)
//   }//   if (this.heap[rightIndex] && this.heap[rightIndex].value < this.heap[index].value) {
//     this.swap(rightIndex, index);
//     this.shiftDown(rightIndex)
//   }
// }

常见算法及算法思想

排序

把某个乱序的数组变成升序序或者降序的数组, js比较常用sort方法进行排序

冒泡排序

  • 比较所有相邻元素,如果第一个比第二个大就交换他们
  • 执行一次后可以保证最后一个数字是最大的
  • 重复执行 n-1 次,就可以完成排序

// 时间复杂度 O(n ^ 2) n为数组长度
// 空间复杂度 O(1)
Array.prototype.bubbleSort = function () {for (i = 0; i < this.length - 1; i++) {for (let j = 0; j < this.length - 1 - i; j++) {if (this[j] > this[j + 1]) {// 交换数据[this[j], this[j + 1]] = [this[j + 1], this[j]];}}}
}

选择排序

  • 找到数组中最小的值,选中它并放到第一位
  • 接着找到数组中第二小的值,选中它并放到第二位
  • 重复上述步骤执行 n-1 次

// 时间复杂度:O(n ^ 2) n为数组长度
// 空间复杂度:O(1)
Array.prototype.selectionSort = function () {for (let i = 0; i < this.length - 1; i++) {let indexMin = i;for (let j = i; j < this.length; j++) {// 如果当前这个元素 小于最小值的下标 就更新最小值的下标if (this[j] < this[indexMin]) {indexMin = j;}}// 避免自己和自己进行交换if (indexMin !== i) {// 进行交换数据[this[i], this[indexMin]] = [this[indexMin], this[i]];}}
}

插入排序

  • 从第二个数,开始往前比较
  • 如它大就往后排
  • 以此类推进行到最后一个数

// 时间复杂度 O(n ^ 2)
Array.prototype.insertionSort = function () {// 遍历数组 从第二个开始for (let i = 1; i < this.length; i++) {// 获取第二个元素const temp = this[i];let j = i;while (j > 0) {// 如果当前元素小于前一个元素 就开始往后移动if (this[j - 1] > temp) {this[j] = this[j - 1];} else {// 否则就跳出循环break}// 递减j--;}// 前一位置赋值为当前元素this[j] = temp;}
}

归并排序

  • 分: 把数组劈成两半 在递归的对子数组进行分操作,直到分成一个个单独的数
  • 合: 把两个树合并为有序数组,再对有序数组进行合并, 直到全部子数组合并为一个完整的数组

// 时间复杂度 O(nlogn) 分需要劈开数组,所以是logn, 合则是n
// 空间复杂度 O(n)
Array.prototype.mergeSort = function () {const rec = (arr) => {// 递归终点if (arr.length === 1) return arr// 获取中间索引const mid = arr.length >> 1;// 通过中间下标,进行分割数组const left = arr.slice(0, mid);const right = arr.slice(mid);// 左边和右边的数组进行递归,会得到有序的左数组,和有序的右数组const orderLeft = rec(left);const orderRight = rec(right);// 存放结果的数组const res = [];while (orderLeft.length || orderRight.length) {// 如左边和右边数组都有值if (orderLeft.length && orderRight.length) {// 左边队头的值小于右边队头的值 就左边队头出队,否则就是右边队头出队res.push(orderLeft[0] < orderRight[0] ? orderLeft.shift() : orderRight.shift())} else if (orderLeft.length) {// 把左边的队头放入数组res.push(orderLeft.shift())} else if (orderRight.length) {// 把右边的队头放入数组res.push(orderRight.shift())}}return res}const res = rec(this)// 把结果放入原数组res.forEach((n, i) => this[i] = n)
}

合并两个有序链表

// 时间复杂度O(n) n为链表1和链表2的长度之和
// 空间复杂度O(1)
var mergeTwoLists = function (list1, list2) {// 新建一个新链表 作为返回值const res = {val: 0,next: null}// 指向新链表的指针let p = res;// 建立两个指针let p1 = list1;let p2 = list2;// 遍历两个链表while (p1 && p2) {// 如果链表1 小于 链表2的值 就接入链表1的值if (p1.val < p2.val) {p.next = p1;// 需要往后移动p1 = p1.next;} else {// 否则接入链表2的值p.next = p2;// 需要往后移动p2 = p2.next;}// p永远要往后移动一位p = p.next;}// 如果链表1或者链表2还有值,就把后面的值全部接入新链表if (p1) {p.next = p1;}if (p2) {p.next = p2;}return res.next;
};

快速排序

  • 分区: 从数组中任意选择一个 基准, 所有比基准小的元素放在基准前面,比基准大的元素放在基准后面
  • 递归: 递归的对基准前后的子数组进行分区

// 时间复杂度 O(nlogN)
// 空间复杂度 O(1)
Array.prototype.quickSort = function () {const rec = (arr) => {// 如果数组长度小于等于1 就不用排序了if (arr.length <= 1) { return arr }// 存放基准前后的数组const left = [];const right = [];// 取基准const mid = arr[0];for (let i = 1; i < arr.length; i++) {// 如果当前值小于基准就放到基准前数组里面if (arr[i] < mid) {left.push(arr[i]);} else {// 否则就放到基准后数组里面right.push(arr[i]);}}// 递归调用两边的子数组return [...rec(left), mid, ...rec(right)];};const res = rec(this);res.forEach((n, i) => this[i] = n);
}

搜索

找出数组中某个元素的下标,js中通常使用indexOf方法进行搜索

顺序搜索

  • 就比如indexOf方法, 从头开始搜索数组中的某个元素

二分搜索

  • 从数组中的中间位置开始搜索,如果中间元素正好是目标值,则搜索结束
  • 如果目标值大于或者小于中间元素,则在大于或者小于中间元素的那一半数组中搜索
  • 数组必须是有序的,如不是则需要先进行排序

// 时间复杂度:O(log n)
// 空间复杂度:O(1)
Array.prototype.binarySearch = function (item) {// 代表数组的最小索引let low = 0;// 和最大索引let higt = this.length - 1;while (low <= higt) {// 获取中间元素索引const mid = (low + higt) >> 1;const element = this[mid];// 如果中间元素小于于要查找的元素 就把最小索引更新为中间索引的下一个if (element < item) {low = mid + 1} else if (element > item) {// 如果中间元素大于要查找的元素 就把最大索引更新为中间索引的前一个higt = mid - 1;} else {// 如果中间元素等于要查找的元素 就返回索引return mid;}}return -1
}

猜数字大小

// 时间复杂度 O(logn) 分割成两半的 基本都是logn
// 空间复杂度 O(1)
var guessNumber = function (n) {// 定义范围最小值和最大值const low = 1;const high = n;while (low <= high) {// 获取中间值const mid = (low + high) >>> 1;// 这个方法是 leetcode 中的方法// 如果返回值为-1 就是小了// 如果返回值为1  就是大了// 如果返回值为0  就是找到了 const res = guess(mid);// 剩下的操作就和二分搜索一样if (res === 0) {return mid} else if (res === 1) {low = mid + 1;} else {high = mid - 1;}}
};

分而治之

算法设计中的一种思想,将一个问题分成多个子问题,递归解决子问题,然后将子问题的解合并成最终的解

归并排序

  • 分:把数组从中间一分为二
  • 解:递归地对两个子数组进行归并排序
  • 合:合并有序子数组

快速排序

  • 分:选基准,按基准把数组分成两个子数组
  • 解:递归地对两个子数组进行快速排序
  • 合:对两个子数组进行合并

二分搜索

  • 二分搜索也属于分而治之这种思想

分而治之思想: 猜数字大小

// 时间复杂度 O(logn) 
// 空间复杂度 O(logn) 递归调用栈 所以是logn
var guessNumber = function (n) {// 递归函数 接受一个搜索范围const rec = (low, high) => {// 递归结束条件if (low > high) return;// 获取中间元素const mid = (low + high) >>> 1;// 判断是否猜对const res = guess(mid)// 猜对if (res === 0) {return mid} else if (res === 1) {// 猜大了return rec(mid + 1, high)} else {// 猜小了return rec(low, mid - 1)}}return rec(1, n)
};

分而治之思想: 翻转二叉树

// 时间复杂度 O(n) n为树的节点数量
// 空间复杂度 O(h) h为树的高度
var invertTree = function (root) {if (!root) return nullreturn {val: root.val,left: invertTree(root.right),right: invertTree(root.left)}
};

分而治之思想: 相同的树

// 时间复杂度 o(n) n为树的节点数量
// 空间复杂度 o(h) h为树的节点数
var isSameTree = function (p, q) {if (!p && !q) return trueif (p && q&& p.val === q.val&& isSameTree(p.left, q.left)&& isSameTree(p.right, q.right)) return truereturn false
};

分而治之思想: 对称二叉树

// 时间复杂度 O(n)
// 空间复杂度 O(n) 
var isSymmetric = function (root) {if (!root) return trueconst isMirror = (l, r) => {if (!l && !r) return trueif (l && r && l.val === r.val&& isMirror(l.left, r.right)&& isMirror(l.right, r.left)) return truereturn false}return isMirror(root.left, root.right)
};

动态规划

动态规划是算法设计中的一种思想,将一个问题分解为相互重叠的子问题,通过反复求解子问题来解决原来的问题

斐波那契数列

// 时间复杂度 O(n) 
// 空间复杂度 O(n)
function fib(n) {let dp = [0, 1, 1];for (let i = 3; i <= n; i++) {// 当前值等于前两个值之和dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];
}

爬楼梯


// 正在爬楼梯, 需要n阶才能到达楼顶
// 每次只能爬 1 或者 2 个台阶, 有多少中不同的方法可以到达楼顶// 时间复杂度 O(n) n是楼梯长度
// 空间复杂度 O(1)
var climbStairs = function (n) {if (n < 2) return 1let dp0 = 1;let dp1 = 1for (let i = 2; i <= n; i++) {[dp0, dp1] = [dp1, dp1 + dp0]}return dp1
};

贪心算法

贪心算法是算法设计中的一种思想,期盼通过每个阶段的局部最优选择,从而达到全局的最优,但 结果并不一定是最优

分发饼干

// 每个孩子都有一个胃口g. 每个孩子只能拥有一个饼干
// 输入: g = [1,2,3], s = [1,1]
// 输出: 1
// 三个孩子胃口值分别是1,2,3  但是只有两个饼干,所以只能让胃口1的孩子满足// 时间复杂度 O(nlogn) 
// 空间复杂度 O(1)
var findContentChildren = function (g, s) {// 对饼干和孩子胃口进行排序g.sort((a, b) => a - b)s.sort((a, b) => a - b)// 是第几个孩子let i = 0s.forEach((n) => {// 如果饼干能满足第一个孩子if (n >= g[i]) { // 就开始满足第二个孩子i += 1}})return i
}

买卖股票的最佳时机Ⅱ

// 时间复杂度 O(n) n为股票的数量
// 空间复杂度 O(1)
var maxProfit = function (prices) {// 存放利润const profit = 0;for (let i = 1; i < prices.length; i++) {// 不贪 如有更高的利润就直接卖出if (prices[i] > prices[i - 1]) {profit += prices[i] - prices[i - 1]}}return profit
};

回溯算法

回溯算法是算法设计中的一种思想,一种渐进式寻找并构建问题解决方式的策略,会先从一个可能的动作开始解决问题,如不行,就回溯选择另外一个动作,直到找到一个解

全排列

// 输入 [1, 2, 3]
// 输出 [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]// 时间复杂度 O(n!) n! = 1 * 2 * 3 * ··· * (n-1) * n;
// 空间复杂度 O(n)
var permute = function (nums) {// 存放结果const res = [];const backTrack = (path) => {// 递归结束条件 if (path.length === nums.length) {res.push(path)return}// 遍历传入数组nums.forEach(n => {// 如果子数组中有这个元素就是死路, 需要回溯回去走其他路if (path.includes(n)) return;// 加入到子数组里backTrack(path.concat(n))})}backTrack([])return res;
};

子集

// 输入 [1,2,3]
// 输出 [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]// 时间复杂度 O(2 ^ N) 每个元素都有两种可能
// 空间复杂度 O(N)
var subsets = function (nums) {// 存放结果数组const res = [];const backTrack = (path, l, start) => {// 递归结束条件if (path.length === l) {res.push(path)return}// 遍历输入的数组长度 起始位置是startfor (let i = start; i < nums.length; i++) {// 递归调用 需要保证子集的有序, start为 i+1backTrack(path.concat(nums[i]), l, i + 1)}};// 遍历输入数组长度for (let i = 0; i <= nums.length; i++) {// 传入长度 起始索引backTrack([], i, 0)}return res
};

结语

本文中,仅对常见和常用的数据结构与算法进行了演示
算法这个东西,平时还是要 多练。 记得看完后多刷一刷leetcode
文中如有错误,欢迎大家在评论区指正,如果本文对你有帮助, 记得点赞👍和关注❤️


---------------------
作者:guxin_duyin
来源:CSDN
原文:https://blog.csdn.net/guxin_duyin/article/details/125120120
版权声明:本文为作者原创文章,转载请附上博文链接!
内容解析By:CSDN,CNBLOG博客文章一键转载插件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/283730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

精通Java设计模式从初见到相爱之工厂+策略模式(3)

为什么80%的码农都做不了架构师&#xff1f;>>> 1、公司项目需求。 用户签到活动&#xff0c;会员签到怎么处理&#xff0c;超级会员怎么处理&#xff0c;普通用户签到怎么处理&#xff0c;针对不同的档次&#xff0c;有不同的方案&#xff0c;所以在项目中用到了策…

jquery weui 中alert弹出框在ios中跳动问题

问题描述&#xff1a; jquery-weui中的弹出框在ios上会有一个右下角向中间滑动的效果&#xff0c;在Android上没有这个效果。 解决方法&#xff1a; 修该jquery-weui.js中的openModal方法如下图: 转载于:https://www.cnblogs.com/xianZJ/p/6773097.html

WPF效果第一百九十五篇之又玩ListBox

ListBox一直是我的最爱;今天再次基于他玩耍一下不一样的效果;闲话不多扯直接看效果:1、这次直接用的ItemContainerStyle:2、通过HitTest实现点选边框&#xff1a;Point point e.GetPosition(LightDarkListBox); VisualTreeHelper.HitTest(LightDarkListBox, new HitTestFilter…

Web3,互联网新造神“机器”?

本文来自微信公众号&#xff1a;每经头条 &#xff08;ID&#xff1a;nbdtoutiao&#xff09;&#xff0c;作者&#xff1a;李蕾&#xff0c;编辑&#xff1a;肖芮冬&#xff0c;头图来自&#xff1a;视觉中国 “与目前的互联网相比&#xff0c;Web3基于区块链等底层技术&#…

普通中年人的真实出路

阅读本文大概需要6分钟。互联网人甚至中国整体的用工市场的确有中年淘汰的问题&#xff0c;我们可以当它不存在&#xff0c;甚至当有人给出解法的时候&#xff0c;我们也可以认为他们在传播焦虑&#xff0c;但事实就是事实&#xff0c;它的存在不随个人意愿而转移。最近抖音上有…

项目管理常见的问题

综合管理 缺乏企业级的项目管理平台;项目目标不清楚;项目经理不了解项目管理流程和工具;项目模板不统一;计划意识薄弱&#xff0c;缺乏规范的分解。难以过程监控&#xff0c;实时地了解项目进度,靠手工统计和汇报项目进度&#xff0c;难以真实反映进度。项目控制不力&#xff0…

【温故知新】C# Linq中 Select SelectMany 使用技巧

微信公众号&#xff1a;趣编程ACE关注可了解更多的.NET日常实战开发技巧&#xff0c;如需源码 后台回复 源码 即可;如果觉得对你有帮助&#xff0c;欢迎关注C# Linq中 Select && SelectMany 使用技巧Select 和 SelectMany 是我们开发中对集合常用的两个扩展方法&#x…

bzoj4870

http://www.lydsy.com/JudgeOnline/problem.php?id4870 矩阵快速幂。。。 人话题意&#xff1a;从nk个物品里选模k余r个物品&#xff0c;问方案数模P 那么我们有方程 f[i][j]f[i-1][j]f[i-1][j-1] 跟组合数一个样子 j∈(0,k) 这个物品选还是不选加起来 构造矩阵&#xff1a;x.…

Codeforces Round #410 (Div. 2) D. Mike and distribution 思维+数学

链接&#xff1a; http://codeforces.com/contest/798/problem/D 题意&#xff1a; 给你两个长度为n的数列a和b&#xff0c;让你选n/21个下标&#xff0c;使得2*∑ai>suma,2*∑bi>sumb 题解1&#xff1a; 用一个叫random_shuffle的东西&#xff0c;每次都乱选&#xff0c…

PerfView专题 (第三篇):如何寻找 C# 中的 VirtualAlloc 内存泄漏

一&#xff1a;背景 上一篇我们聊到了如何用 PerfView 去侦察 NTHeap 的内存泄漏&#xff0c;这种内存泄漏往往是用 C 的 malloc 或者 C 的 new 分配而不释放所造成的&#xff0c;这一篇我们来聊一下由 VirtualAlloc 方法造成的泄漏如何去甄别&#xff1f;了解 VirtualAlloc 的…

[APP]- 找回Xcode7的代码折叠功能

为什么80%的码农都做不了架构师&#xff1f;>>> 原 找回Xcode7的代码折叠功能 升级到Xcode7后&#xff0c;会发现代码折叠功能不见了&#xff0c;这是怎么回事&#xff1f; 其实这个功能还在的&#xff0c;只是苹果默认把这个功能禁掉了&#xff1a;在Xcode菜单里选…

HTML5程序开发范例宝典 完整版 (韩旭等著) 中文pdf扫描版

HTML5程序开发范例宝典紧密围绕编程者在编程中遇到的实际问题和开发中应该掌握的技术&#xff0c;全面介绍了利用HTML进行程序开发的各方面技术和技巧。全书共16章&#xff0c;内容包括HTML网页布局、HTML基本元素、HTML高级元素、表单的使用、列表的使用、超链接、表格应用、图…

ASP.NET Core 6框架揭秘实例演示[11]:诊断跟踪的几种基本编程方式

在整个软件开发维护生命周期内&#xff0c;最难的不是如何将软件系统开发出来&#xff0c;而是在系统上线之后及时解决遇到的问题。一个好的程序员能够在系统出现问题之后马上定位错误的根源并找到正确的解决方案&#xff0c;一个更好的程序员能够根据当前的运行状态预知未来可…

Autofac详解

Autofac详解 零、文章目录 一、Autofac详解 1、概述 Autofac是第三方IOC容器&#xff0c;是当前最流行的IOC容器。功能强大&#xff0c;比asp.netcore内置容器强大得多&#xff0c;支持属性注入和方法注入&#xff0c;支持AOP。官网地址&#xff1a;http://autofac.org/源码下载…

与ObjectDataSource共舞

4&#xff0c;ORM组件XCode&#xff08;与ObjectDataSource共舞&#xff09; XCode为了能更方便的解决大部分问题&#xff0c;不得不“屈身”于ObjectDataSource。 先上一个经典例子&#xff08;ObjectDataSourceGridView&#xff09;&#xff08;ObjectDataSource&#xff0…

ASP.NET Core 3.1中使用JWT身份认证

文章目录 0、引言1、关于Authentication与Authorization2、整个认证流程是怎样的&#xff1f;3、开始JWT身份认证 3.1 安装JwtBearer包3.2 安装Swashbuckle.AspNetCore包3.3 添加身份认证相关服务到容器中3.4 添加Swagger服务到容器中3.5 将身份认证加入到管道中3.6 将swagger加…

《ASP.NET Core 6框架揭秘》实例演示[10]:Options基本编程模式

依赖注入使我们可以将依赖的功能定义成服务&#xff0c;最终以一种松耦合的形式注入消费该功能的组件或者服务中。除了可以采用依赖注入的形式消费承载某种功能的服务&#xff0c;还可以采用相同的方式消费承载配置数据的Options对象&#xff0c;这篇文章演示几种典型的编程模式…

实现仿简书选取内容生成分享图片效果

前几天脑子里忽然闪过简书的图片分享效果&#xff0c;感觉很简洁也很漂亮&#xff0c;想着能不能用自己方式实现一下呢&#xff0c;于是今天就有了这篇文章。好了&#xff0c;先看下效果图吧&#xff1a; 项目地址: https://github.com/zhangke301... 欢迎star、issues~ 实现这…

千万级可观测数据采集器--iLogtail代码完整开源

2022年6月29日&#xff0c;阿里云iLogtail开源后迎来首次重大更新&#xff0c;正式发布完整功能的iLogtail社区版。本次更新开源全部C核心代码&#xff0c;该版本在内核能力上首次对齐企业版&#xff0c;开发者可以构建出与企业版性能相当的iLogtail云原生可观测性数据采集器。…

Java8新特性--CompletableFuture

并发与并行 Java 5并发库主要关注于异步任务的处理&#xff0c;它采用了这样一种模式&#xff0c;producer线程创建任务并且利用阻塞队列将其传递给任务的consumer。这种模型在Java 7和8中进一步发展&#xff0c;并且开始支持另外一种风格的任务执行&#xff0c;那就是将任务的…