一:背景
1.讲故事
在B站,公众号上发了一篇 AOT 的文章后,没想到反响还是挺大的,都称赞这个东西能抗反编译,可以让破解难度极大提高,可能有很多朋友对逆向不了解,以为用 ILSpy
,Reflector
,DnSpy
这些工具打不开就觉得很安全,其实不然,在 OllyDbg
,IDA
,WinDBG
这些逆向工具面前一样是裸奔。
既然大家都很感兴趣,那这篇就和大家聊一聊。
二:几个例子
1. 动态修改程序数据
修改程序数据在逆向中再正常不过了,由于目前的 AOT 只能发布成 x64 ,这里就用 WinDbg
做下演示,首先看下例子。
internal class Program{static void Main(string[] args){while (true){Console.WriteLine("hello world!");Thread.Sleep(1000);}}}
程序在不断的输出,接下来我们将 hello world
中的 world
给去掉,操作手法非常简单,先内存搜索找到 hello world
,然后修改 length=5 即可。
0:005> lm
start end module name
00007ff7`95b70000 00007ff7`95e5d000 ConsoleApp1 C (private pdb symbols) 0:005> s-u 00007ff7`95b70000 L?0x00007ff7`95e5d000 hello
00007ff7`95e1c41c 0068 0065 006c 006c 006f 0020 0077 006f h.e.l.l.o. .w.o.0:000> dp 00007ff795e1c41c-0x4 L1
00007ff7`95e1c418 00650068`0000000c0:000> eq 00007ff7`95e1c418 00650068`00000005
0:000> g
2. 获取程序托管堆
AOT 再怎么牛,它终还是个托管程序,既然是托管程序自然就有托管堆,托管堆中就有所有的托管数据,玩过 SOS.dll
朋友应该知道,用 !eeheap -gc
就能把托管堆给显示出来,比如下面这样。
0:022> !eeheap -gc
Number of GC Heaps: 1
generation 0 starts at 0x000002414D891030
generation 1 starts at 0x000002414D891018
generation 2 starts at 0x000002414D891000
ephemeral segment allocation context: nonesegment begin allocated committed allocated size committed size
000002414D890000 000002414D891000 000002414D8D1FE8 000002414D8D2000 0x40fe8(266216) 0x41000(266240)
Large object heap starts at 0x000002415D891000segment begin allocated committed allocated size committed size
000002415D890000 000002415D891000 000002415D891018 000002415D892000 0x18(24) 0x1000(4096)
Pinned object heap starts at 0x0000024165891000
0000024165890000 0000024165891000 0000024165899C10 00000241658A2000 0x8c10(35856) 0x11000(69632)
Total Allocated Size: Size: 0x49c10 (302096) bytes.
Total Committed Size: Size: 0x42000 (270336) bytes.
------------------------------
GC Allocated Heap Size: Size: 0x49c10 (302096) bytes.
GC Committed Heap Size: Size: 0x42000 (270336) bytes.
虽然目前的 AOT 不支持 SOS 扩展,无法显示出托管堆,但一点关系都没有,SOS 是通过 DataAccess 去挖的,大不来我手工挖一下就好了哈,接下来就是怎么挖的问题了,熟悉 CLR 的朋友应该知道所谓的托管堆在内部用的是 generation_table[]
一维数据来维护的,以 代
的方式来划分,代的落地是用 heap_segment
来表示的, 参考代码如下:
generation gc_heap::generation_table [total_generation_count];enum gc_generation_num
{// small object heap includes generations [0-2], which are "generations" in the general sense.soh_gen0 = 0,soh_gen1 = 1,soh_gen2 = 2,max_generation = soh_gen2,// large object heap, technically not a generation, but it is convenient to represent it as suchloh_generation = 3,// pinned heap, a separate generation for the same reasons as lohpoh_generation = 4,uoh_start_generation = loh_generation,// number of ephemeral generationsephemeral_generation_count = max_generation,// number of all generationstotal_generation_count = poh_generation + 1
};
接下来用 x 命令看下数组内容,代码如下:
0:000> x ConsoleApp1!WKS::gc_heap::generation_table
00007ff7`95e25010 ConsoleApp1!WKS::gc_heap::generation_table = class WKS::generation [5]0:000> dx -r1 (*((ConsoleApp1!WKS::generation (*)[5])0x7ff795e25010))
(*((ConsoleApp1!WKS::generation (*)[5])0x7ff795e25010)) [Type: WKS::generation [5]][0] [Type: WKS::generation]...[4] [Type: WKS::generation]0:000> dx -r1 (*((ConsoleApp1!WKS::generation *)0x7ff795e25010))
(*((ConsoleApp1!WKS::generation *)0x7ff795e25010)) [Type: WKS::generation][+0x038] start_segment : 0x25100000000 [Type: WKS::heap_segment *][+0x040] allocation_start : 0x25100001030 : 0x38 [Type: unsigned char *][+0x048] allocation_segment : 0x25100000000 [Type: WKS::heap_segment *][+0x0d0] allocation_size : 0x0 [Type: unsigned __int64][+0x100] gen_num : 0 [Type: int]...0:000> dx -r1 ((ConsoleApp1!WKS::heap_segment *)0x25100000000)
((ConsoleApp1!WKS::heap_segment *)0x25100000000) : 0x25100000000 [Type: WKS::heap_segment *][+0x000] allocated : 0x25100001048 : 0x90 [Type: unsigned char *][+0x008] committed : 0x25100012000 : Unable to read memory at Address 0x25100012000 [Type: unsigned char *][+0x010] reserved : 0x25110000000 : 0x18 [Type: unsigned char *][+0x018] used : 0x25100009fe0 : 0x0 [Type: unsigned char *][+0x020] mem : 0x25100001000 : 0x38 [Type: unsigned char *][+0x028] flags : 0x0 [Type: unsigned __int64][+0x030] next : 0x0 [Type: WKS::heap_segment *]...
上面的这些字段就描述出了 !eeheap -gc
的结果,接下来想挖什么,提取什么我就不过多介绍了。
3. 提取托管线程列表
提取 托管线程
列表也是非常重要的, 它能指示出很多信息,一般用 !t
命令就能显示,输出如下:
0:022> !t
ThreadCount: 17
UnstartedThread: 0
BackgroundThread: 6
PendingThread: 0
DeadThread: 0
Hosted Runtime: noLock DBG ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain Count Apt Exception0 1 4128 000002414BDB8C70 2a020 Preemptive 000002414D8C6108:000002414D8C8000 000002414bdaf8f0 -00001 MTA 6 2 4458 000002414BDE5EB0 2b220 Preemptive 0000000000000000:0000000000000000 000002414bdaf8f0 -00001 MTA (Finalizer) 7 4 23e8 000002416DDB15C0 102b220 Preemptive 000002414D8C9250:000002414D8CA000 000002414bdaf8f0 -00001 MTA (Threadpool Worker) ...20 17 50a8 000002416DE43DD0 102b220 Preemptive 000002414D8BC2D0:000002414D8BDFD0 000002414bdaf8f0 -00001 MTA (Threadpool Worker) 21 18 57d4 000002416DE628E0 8029220 Preemptive 000002414D8CC2A8:000002414D8CE000 000002414bdaf8f0 -00001 MTA (Threadpool Completion Port)
既然目前的 SOS 不支持,同样可以手工到 CLR 中去挖,熟悉的朋友应该知道 !t
的数据源来自于 ThreadStore::s_pThreadStore
下的 m_ThreadList
集合,它以链表的形式串联了每个线程的 LinkPtr
字段,但可惜的是,在 AOT 中,这一块已经重写了,由 g_pTheRuntimeInstance
全局变量下的 m_ThreadList
来维护了。
为了方便观察,多生成几个 Thread。
static void Main(string[] args){Debugger.Break();var tasks = Enumerable.Range(0, 10).Select(m => new Thread(() =>{Console.WriteLine($"tid={Thread.CurrentThread.ManagedThreadId} 已执行!");Console.ReadLine();}));foreach (var item in tasks){item.Start();}Console.ReadLine();}
程序跑起来后,深挖 g_pTheRuntimeInstance
全局变量即可。
0:015> x ConsoleApp1!g_pTheRuntimeInstance
00007ff7`0155ee20 ConsoleApp1!g_pTheRuntimeInstance = 0x00000291`cb5b9300
0:015> dx -r1 ((ConsoleApp1!RuntimeInstance *)0x291cb5b9300)
((ConsoleApp1!RuntimeInstance *)0x291cb5b9300) : 0x291cb5b9300 [Type: RuntimeInstance *][+0x000] m_pThreadStore : 0x291cb5b9390 [Type: ThreadStore *]...
0:015> dx -r1 ((ConsoleApp1!ThreadStore *)0x291cb5b9390)
((ConsoleApp1!ThreadStore *)0x291cb5b9390) : 0x291cb5b9390 [Type: ThreadStore *][+0x000] m_ThreadList [Type: SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> >][+0x008] m_pRuntimeInstance : 0x291cb5b9300 [Type: RuntimeInstance *][+0x010] m_Lock [Type: ReaderWriterLock]
0:015> dx -r1 (*((ConsoleApp1!SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> > *)0x291cb5b9390))
(*((ConsoleApp1!SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> > *)0x291cb5b9390)) [Type: SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> >][+0x000] m_pHead : 0x291ed366240 [Type: Thread *]
0:015> dx -r1 ((ConsoleApp1!Thread *)0x291ed366240)
((ConsoleApp1!Thread *)0x291ed366240) : 0x291ed366240 [Type: Thread *]...[+0x058] m_pNext : 0x291cb6aeb60 [Type: Thread *][+0x060] m_hPalThread : 0x204 [Type: void *][+0x068] m_ppvHijackedReturnAddressLocation : 0x0 [Type: void * *][+0x070] m_pvHijackedReturnAddress : 0x0 [Type: void *][+0x078] m_uHijackedReturnValueFlags : 0x0 [Type: unsigned __int64][+0x080] m_pExInfoStackHead : 0x0 [Type: ExInfo *][+0x088] m_threadAbortException : 0x0 [Type: Object *][+0x090] m_pThreadLocalModuleStatics : 0x291cb6aee90 [Type: void * *][+0x098] m_numThreadLocalModuleStatics : 0x1 [Type: unsigned int][+0x0a0] m_pGCFrameRegistrations : 0x0 [Type: GCFrameRegistration *][+0x0a8] m_pStackLow : 0xf754100000 [Type: void *][+0x0b0] m_pStackHigh : 0xf754200000 [Type: void *][+0x0b8] m_pTEB : 0xf7533ba000 : 0x0 [Type: unsigned char *][+0x0c0] m_uPalThreadIdForLogging : 0x2044 [Type: unsigned __int64][+0x0c8] m_threadId [Type: EEThreadId][+0x0d0] m_pThreadStressLog : 0x0 [Type: void *][+0x0d8] m_interruptedContext : 0x0 [Type: _CONTEXT *][+0x0e0] m_redirectionContextBuffer : 0x0 [Type: unsigned char *]
0:015> dx -r1 (*((ConsoleApp1!EEThreadId *)0x291ed366308))
(*((ConsoleApp1!EEThreadId *)0x291ed366308)) [Type: EEThreadId][+0x000] m_uiId : 0x2044 [Type: unsigned __int64]
从CLR 的 Thread 维护的信息来看,这个结构体已经很小了,也说明 AOT 在Thread信息维护上做了很多的精简。
三:总结
总的来说,AOT 确实能加速程序的初始启动,一体化的打包机制也非常方便部署,但怎么变终究还是一个托管程序,需要底层的 C++ 托着它,扛 反编译 无从谈起,所以防小人的话,该加壳的加壳,该混淆的混淆。